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Abstract

Why don’t successful venture capitalists eliminate excess demand for their follow-on funds
by aggressively raising their performance fees? We propose a theory of learning that leads to
informational hold-up in the VC market. Investors in a fund learn whether the VC has skill or
was lucky, whereas potential outside investors only observe returns. This gives the VC’s current
investors hold-up power when the VC raises his next fund: Without their backing, he cannot
persuade anyone else to fund him, since outside investors would interpret the lack of backing as
a sign that his skill is low. This hold-up power diminishes the VC’s ability to increase fees in
line with performance. The model provides a rationale for the persistence in after-fee returns
documented by Kaplan and Schoar (2005). Empirical evidence from a large sample of U.S. VC
funds is consistent with the model. We estimate that up to 68.7% of VC firms lack skill.
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The performance of venture capital (VC) funds appears highly persistent across a sequence of

funds managed by the same manager (Kaplan and Schoar (2005)). This contrasts with evidence for

mutual funds (Malkiel (1995)) and raises an interesting question: Why do successful VCs not raise

their fees in line with performance, effectively auctioning off the stakes in their follow-on funds to

the highest bidder?

As Berk and Green (2004) show in the context of mutual funds, if investors supply their capital

competitively but fund management skill is scarce, investors’ expected excess returns must equal

zero, realized returns must be unpredictable from public information, and fund managers will earn

economic rents reflecting their skill. This fits the mutual fund industry, where returns do not appear

persistent, but not the VC industry. Instead, we argue that to explain performance persistence in

VC funds, the investor market must become uncompetitive in some way, forcing VCs to share the

rents their skills generate with their investors.

A constant level of market power among investors over time is not sufficient to generate persis-

tence. To see why, suppose there is a permanent shortage of investors willing to tie up their capital

for the ten-year duration that is common in VC funds. Market power then implies that investors

earn positive expected excess returns, by virtue of sharing in the VC’s rents, but these expected

returns, though positive, will be equal across funds (holding risk constant). Moreover, realized

returns must remain unpredictable from public information; otherwise, investors could improve

their expected returns by reallocating capital across VCs. Thus, to explain persistence, we need

investors’ market power to have increased by the time a VC raises his next fund.

We propose a model of learning and informational hold-up in the VC market designed to explain

performance persistence. The key unknown is whether a fund manager (the general partner or GP)

has skill. To begin with, investors (the limited partners or LPs) do not know the GP’s skill, but

because skill drives performance, over time LPs have an opportunity to learn. We model GPs as

potentially managing a sequence of two funds, each lasting two periods and partially overlapping

in time. Thus, a second fund would be raised before the final performance of the GP’s first fund is
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publicly known. Whether a second fund is actually raised depends on what investors have learned

about the GP’s skill.

The key ingredient of the model is that investing in a fund gives LPs an opportunity to collect

‘soft’ information about the GP’s skill. Other investors in the market, on the other hand, can

only observe verifiable ‘hard’ information, such as realized returns. Access to soft information

gives LPs an informational advantage over the market when it comes to distinguishing between

skill and luck.1 Soft information is arguably particularly important in the VC industry: VCs

invest in risky, unlisted, and hard-to-value companies which they hold for a number of years before

eventually selling them (or, more often, writing them off). Objective returns thus take many years

to materialize, unlike in the mutual fund industry where managers invest in traded securities that

can easily and objectively be valued, potentially in real time.2

It is the asymmetric evolution of information that makes the LP market uncompetitive over

time in our model. When a GP raises his first fund, no-one knows his skill. Thus, he faces a

large set of potential investors and the LP market is initially perfectly competitive. But over

time, as ‘incumbent’ LPs find out his skill before outside investors do, the LP market becomes

less competitive. This asymmetric learning in turn enables incumbent LPs to hold the GP up

when he next raises a fund, because other potential investors would interpret failure to reinvest

by incumbent LPs as a negative signal about the GP’s skill. Specifically, outside investors face a

winner’s curse—the better-informed incumbent LPs will outbid them in a follow-on fund whenever

the GP has skill—and so withdraw from the market for follow-on funds. This gives incumbent

LPs bargaining power when negotiating the terms of a follow-on fund with the GP and leads to

performance persistence: Net of the fee paid to the GP, high LP returns in a first fund predict high

LP returns in a follow-on fund, as the hold-up problem prevents the GP from raising the fee to the

1For empirical evidence of the importance of soft information in learning about corporate managers’ skill, see
Cornelli, Kominek, and Ljungqvist (2012).

2Lerner, Schoar, and Wongsunwai (2007) note that: “Reinvestment decisions by LPs are particularly important
in the private equity industry, where information about the quality of different private equity groups is more difficult
to learn and often restricted to existing investors.” Lerner and Schoar (2004) argue that LPs typically demand wide-
ranging information rights in order to inform their decision whether to reinvest. Chung et al. (2010) use a learning
model to calibrate the incentive effects of future fundraising in the VC market.
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point where investors just break even.

A natural question to ask is why the GP cannot play off the incumbent LPs in his first fund

against each other, such that the LPs compete away the rents when negotiating their investments

in his second fund. To allow for such a ‘Bertrand equilibrium’ outcome, we model each first fund

as having two incumbent LPs. As our sequential bargaining model shows, incumbent LPs will be

able to hold the GP up, and so enjoy performance persistence, as long as idiosyncratic fund risk is

sufficiently high and LPs are sufficiently risk-averse. Intuitively, the combination of risk aversion

and idiosyncratic risk implies that LPs effectively behave as if they supply funds at an increasing

marginal cost. This prevents them from competing for fund allocations as intensely as they would

in a standard Bertrand competition setting (which assumes constant marginal costs).

Both idiosyncratic fund risk and investor risk aversion are plausible features of the VC market.

Using data for 1980-2006, we estimate that the dispersion in after-fee returns is 2.5 times greater

for VC funds than for mutual funds and 1.4 times greater for VC funds than for hedge funds. To

illustrate this point, Figure 1 graphs kernel densities of after-fee IRRs for these three types of funds

(as well as for buyout funds, which have a similar risk profile as VC funds). The main reason for the

much higher risk of VC funds is that most VC portfolio companies fail. Ljungqvist and Richardson

(2003), for example, estimate that as many as three-quarters of portfolio companies are written

off in the average fund raised in 1981-1993. From the point of view of an LP, therefore, investing

in a VC fund entails a considerable amount of idiosyncratic risk. As we show, this affects the

equilibrium outcome if investors are risk averse. Risk aversion, in turn, is a standard assumption

in the VC setting; see, for example, Jones and Rhodes-Kropf (2003), Sorensen, Wang, and Yang

(2012), and Ang, Papanikolaou, and Westerfield (2012).

Asymmetric learning implies that incumbent LPs and outside investors have different informa-

tion sets. If learning is indeed asymmetric, proxies for incumbent LPs’ ‘soft’ information should

predict not only future performance but also a VC’s ability to raise a follow-on fund and the size

of the follow-on fund if raised, over and above publicly available ‘hard’ information. It is this dis-
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tinction between ‘soft’ and ‘hard’ information that allows us to test whether informational hold-up

can explain performance persistence in venture capital.

We test the model’s predictions using both survey and observational data. The former data

come from Da Rin and Phalippou (2011), who conduct a survey of 2,000 LPs in private equity

and venture capital funds between 2008 and 2010. Among the questions they ask is the following:

“In your experience, does investing in a fund give you priority over other investors when the GP

raises subsequent funds?” We tabulate the responses in Table 1. Of the 239 LPs who answered this

question, 87.5% indicated receiving priority over outside investors in follow-on funds. Moreover,

72.1% of these LPs agreed with the following statement: “If I didn’t re-invest, other investors would

be suspicious and would not invest.” This directly supports the holdup argument that our model

formalizes.

The observational data we use constitutes one of the most comprehensive datasets on U.S. VC

funds assembled to date. The data cover 2,257 funds raised by 962 VC firms over the period 1980

to 2002. Unlike Kaplan and Schoar (2005), who have access only to anonymized fund performance

data, we know the identity of each fund and each firm in our dataset. This allows us to track each

fund and each firm through October 2012. Importantly, we not only have access to the final return

a fund earns over its lifetime, but we also know how a fund’s performance evolves year-by-year over

the course of its life. These ‘interim’ returns are publicly observable by all potential investors at

the time of fundraising and so correspond to the ‘hard’ information in our model. Final returns,

on the other hand, become publicly known only at the end of a fund’s life.

How to capture soft information? Most VCs raise their next fund well before the end of their

current fund’s life. Thus, their current fund’s final return is not yet known when they go out

fundraising. All the market knows at this point is the current fund’s interim return. While the

interim return constitutes hard information, by construction it reflects a mixture of objective cash-

on-cash returns and subjective unrealized capital gains.3 Incumbent LPs observe the reported

3Blaydon and Horvath (2002) document that absent agreed valuation standards in the VC industry, different VC
funds report radically different valuations for the same portfolio companies at a given point in time.
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interim return as well, but in our model they also possess soft information, say knowledge of whether

the GP’s unrealized capital gains are likely to materialize or to evaporate. Soft information allows

incumbent LPs to learn the GP’s skill and thereby helps them predict the current fund’s final

return ahead of time. Based on this argument, we treat a current fund’s final return (which will

be revealed many years later) as a proxy for the soft information that incumbent LPs possess at

the time the GP raises his next fund. We are not aware of any previous work with access to both

interim and final IRRs.

Our results confirm that VC performance is persistent, consistent with Kaplan and Schoar

(2005). Future fund returns are predictable not only based on publicly available ‘hard’ information

but also based on our proxy for ‘soft’ information, consistent with the predictions of our model.

Moreover, ‘soft’ information also predicts whether a VC can raise a follow-on fund and if so, how

much capital he can raise. These results are consistent with the asymmetric learning and so with

the economic mechanism at the heart of our model—informational hold-up.

Finally, our data allow us to estimate the prevalence of skill in the VC industry. The model

predicts that VCs will go out of business (in the sense of being unable to raise a follow-on fund)

once their investors have learned that they lack skill. We find that 661 of the 962 VC firms in our

sample (68.7%) go out of business between 1980 and 2012. This suggests that skill is relatively rare

in the VC industry. On average, VC firms fail after 14.5 years, having raised 2.7 funds over their

lifetime.

Our paper is related to the literature on relationship-banking, which employs similar informa-

tional assumptions (e.g. Sharpe (1990), Rajan (1992), von Thadden (2004)), and to the literature

on learning more generally in financial markets (see Pastor and Veronesi (2009) for a recent survey).

However, unlike in hold-up models in the banking literature, we show that asymmetric learning is

in fact efficient in the VC setting. This follows because VC contracts specify both an investment

level (fund size) and the division of the fund’s surplus between GPs and LPs and, as we show, fund

size turns out to be first-best in both first and follow-on funds. Moreover, GPs may even benefit
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from informational hold-up ex ante, because under certain conditions, first funds can only be raised

under asymmetric learning. Such a preference is consistent with the fact that GPs are willing to

provide their LPs with considerable amounts of soft information about strategies and performance

that cannot credibly be communicated to potential new investors.

In addition, our paper relates to the literatures on VC performance and the relationship be-

tween LPs and GPs. Jones and Rhodes-Kropf (2003) provide empirical evidence in support of the

hypothesis that VCs need to be compensated for bearing idiosyncratic risk through higher expected

returns. Ljungqvist and Richardson (2003) analyze the cash flow, return, and risk characteristics of

private equity funds. Cochrane (2005), Korteweg and Sørensen (2010), and Quigley and Woodward

(2003) estimate the risk and return of VC investments. Lerner, Schoar, and Wongsunwai (2007)

find large heterogeneity in the returns that different classes of investors earn when investing in

private equity and suggest that LPs vary in their level of sophistication.

The remainder of the paper is structured as follows. Section I presents our model of learning and

informational hold-up. Section II presents the sample and data. Section III presents the empirical

analysis, and Section IV discusses and concludes.

I. A Model of Learning About GP Skill

A. Setup

Timeline: At t = 0, there is a continuum of GP types of mass one who differ in skill, µi. We

assume that µi is distributed uniformly over the interval [−µ, µ], such that µi = 0 corresponds to

average skill. At this time, no-one knows which GP has skill. We abstract from agency problems by

assuming that GPs manage their funds in their LPs’ best interest.4 Each GP raises a “first-time”

fund of size I0. A fund lasts two periods and generates cash flows that will be paid out to investors

at t = 2, the end of the second period.

4For a model of agency problems among fund managers in a learning setting, see Ljungqvist, Richardson, and
Wolfenzon (2007).
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Between t = 0 and t = 1, the GP makes a number of investments in portfolio companies whose

performance is hit by a random shock, εi.

At t = 1, the GP publicly releases signal H i
1, reflecting the fund’s interim performance. This

can be thought of as the fund’s interim IRR at t = 1, which in practice would partly consist of

unrealized capital gains on illiquid companies that remain in the fund’s portfolio at that time.

Between t = 1 and t = 2, the GP attempts to exit as many portfolio companies as possible,

through IPOs or sales. This process is subject to another random shock, vi.

At t = 2, a first-time fund returns a cash flow of Ci
2 = Ai

2 ln
(

1 + Ii0
)

and the GP reports the

fund’s final IRR, H i
2.
5 Ai

2 captures the effects of the two random shocks and the GP’s skill, µi:

Ai
2 = a+ f1(µ

i, εi) + f2(µ
i, vi) (1)

εi ∼ N

(

0,
1
2σ

2
(

I i0
)2

[

ln
(

1 + I i0
)]2

)

, vi ∼ N

(

0,
1
2σ

2
(

Ii0
)2

[

ln
(

1 + I i0
)]2

)

, εi and vi independent. (2)

We parameterize the interim and final performance signals as H i
1 = f1(µ

i, εi) = µi + εi and

H i
2 = f2(µ

i, vi) = µi + vi. The letter H is used to indicate that these signals constitute hard

information, i.e., information that can be verified by all parties. The challenge for investors is to

disentangle skill from the two stochastic shocks. As we will show, interim and final IRRs can be

thought of as noisy signals of the GP’s skill.

Depending on information learned between t = 0 and t = 1, the GP may raise a “follow-on”

fund of size I1 at t = 1 which will pay out cash flows two periods later, at t = 3. The overlapping

timing structure of the model captures real-world practice, by which follow-on funds are typically

raised before the first fund has completed its life cycle, i.e., before its final IRR is publicly known.

A follow-on fund, if raised, returns a cash flow of Ci
3 = Ai

3 ln
(

1 + Ii1
)

at t = 3. Using subscript

5The log function captures decreasing returns to scale. This is similar to Berk and Green’s (2004) assumption for
mutual funds and consistent with the evidence reported for private equity funds in Lopez de Silanes, Phalippou, and
Gottschalg (2010).
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“follow-on” to refer to a follow-on fund, we assume that

Ai
3 = a+H i

2,follow−on +H i
3,follow−on (3)

H i
2,follow−on = µi + εifollow−on, H i

3,follow−on = µi + vifollow−on (4)

εifollow−on ∼ N

(

0,
1
2σ

2
(

Ii1
)2

[

ln
(

1 + Ii1
)]2

)

, vifollow−on ∼ N

(

0,
1
2σ

2
(

Ii1
)2

[

ln
(

1 + Ii1
)]2

)

,

where εifollow−on and vifollow−on are independent of each other and of εi and vi. All shocks are

drawn independently across GPs and are independent of the GP’s skill, µi.6 For simplicity, all risk

is idiosyncratic.

Limited partners: At t = 0, there is a large set of identical investors, such that the LP market

is perfectly competitive. Each GP chooses two LPs for his first-time fund. Two is sufficient to

formally show that the presence of multiple informed investors will not eliminate the informational

hold-up that is at the heart of our model, while still preserving mathematical tractability.7 For

simplicity, we assume that GPs do not invest in their own funds.8 At t = 1, we distinguish between

incumbent LPs, who have invested in a given GP’s first-time fund, and outside investors, who have

not.

Learning about GP skill: At t = 1, the GP and the incumbent LPs—but not outside investors—

are assumed to have learned the GP’s skill, µi. Their knowledge of µi constitutes soft information

which cannot be credibly communicated to third parties as it cannot be objectively verified. Thus,

talented GPs cannot credibly convince outside investors of their skill, except to the extent that

their skill is noisily reflected in the fund’s interim performance signal, H i
1. Based on observing this

signal, outside investors update their beliefs about the GP’s skill from the unconditional mean of

6The dependence of the variance of Ai
2 and Ai

3 on fund size is chosen to simplify the analysis by ensuring that
the variance of fund returns does not depend on fund size. The normal distribution of cash flows and the uniform
distribution of GP types allow us to obtain more closed-form solutions but do not qualitatively drive our results.
The more important choice is the functional form of the relation between cash flows and investment, which requires
a functional form whereby C3/I1 is increasing in GP type µi even when I1 is chosen optimally to reflect GP skill.

7While modeling the optimal number of LPs would complicate the model beyond the point of tractability, the
intuition for why multiple informed investors will not compete away their hold-up power does not, as we will show,
depend on the number of LPs.

8In practice, LPs typically contribute 99% of a fund’s capital, with the GP providing the remainder.
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E
(

µi
)

= 0 to E
(

µi|H i
1

)

.

We refer to this setup as asymmetric learning, in the sense that incumbent LPs learn the GP’s

type faster than do outside investors.9 We distinguish this setup from one with symmetric learning

in which both incumbent and outside investors learn the GP’s type perfectly at t = 1.

Preferences and wealth: Both GPs and LPs are risk averse and have CARA preferences over

wealth at time t = 3, when the cash flow from any follow-on fund is revealed. GPs and LPs have

initial wealth of WGP
0 and WLP

0 , respectively. In addition to investing in the VC industry, LPs can

invest at a riskfree rate of rf , set equal to zero for simplicity. We assume that each LP can invest

in one first-time fund and, if desired, in a follow-on fund by the same GP. Cash flows received at

t = 2 from first-time funds are invested at the riskfree rate from t = 2 to t = 3.

Payoff functions: Denote the two incumbent LPs in a first-time fund by a and b. We assume

that the GP and the LPs divide the fund’s cash flow according to the following contract. At t = 2,

the GP is paid a dollar amount of10

XGP
0 = M0,a +M0,b ≡ 2M0 (5)

while the two LPs each receive cash flows net of fees equal to

XLP
0 = Ci

2/2−M0. (6)

As we will see shortly, follow-on funds have either one or two LPs. If both incumbent LPs a

and b invest in the follow-on fund, the GP receives a fee of M1,split,a from LPa and M1,split,b from

LPb. If only one of them invests, the GP receives either M1,sole,a or M1,sole,b, depending on who

invests. The values of the fee, the fund size, and the number of LPs who invest in the follow-on

9Having incumbent LPs learn the GP’s skill perfectly at t = 1 is stronger than necessary. All that is required for
our results to go through is that incumbent LPs receive a more precise signal at t = 1 than do outside investors.

10Fees in VC contracts are usually expressed in percentage terms. For tractability, we model fees in dollars. Once
the optimal fund size has been derived, one can easily calculate the implied percentage fee.
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fund will be the focus of the solution of the model.

We abstract from performance fees. In practice, GPs are paid both a fixed management fee (as

modeled here) and a performance fee (in the form of the carried interest or “carry”). The latter

is intended to provide the GP with incentives to exert effort. As our model abstracts from effort

provision, there is no need to include a performance component in the contract.

B. Fund Size and Fee in Follow-On Funds

Under asymmetric learning, the LP market is perfectly competitive at t = 0 but not at t = 1.

Because outside investors have not learned the GP’s type fully when the GP attempts to raise a

follow-on fund, incumbent LPs have an informational advantage. This will allow incumbent LPs

to extract part of the follow-on fund’s value from the GP.

While it is intuitive that the informational advantage of incumbent LPs should improve the

terms they obtain, it is useful to model the bargaining game explicitly, for two reasons. First, it will

allow us to show that the presence of multiple incumbent LPs does not eliminate the informational

hold-up that is our central mechanism for generating performance persistence. This will be the case

as long as LPs are sufficiently risk averse and idiosyncratic fund risk is sufficiently high. Second,

explicitly modeling the bargaining allows us to be clear about the role played by outside investors.

Bargaining: We extend Rubinstein (1982) bargaining to a setting with three parties and risk

aversion. Starting at t = 1, the GP and incumbent LPs a and b bargain sequentially as follows:

(i) The GP makes an offer to LPa and LPb for each to invest IGP
1,split/2 and for each to pay

a fee of MGP
1,split, for a total fund size of IGP

1,split and a total fee of 2MGP
1,split. We denote this as

a split offer. As an alternative to the split offer, the GP also offers to have a single LP invest

IGP
1,sole with a total fee of MGP

1,sole. We denote this as a sole offer. The GP’s overall offer is hence
[

(IGP
1,split/2,M

GP
1,split), (I

GP
1,sole,M

GP
1,sole)

]

.

(ii) If the GP’s offer is rejected, LPa and LPb simultaneously counter the GP’s offer. LPa

offers to provide either half of the capital needed (a split offer) and pay a fee of MLPa

1,split, or to
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provide all of the capital needed (a sole offer) and pay a fee of MLPa

1,sole. This offer is denoted
[

(ILPa

1,split/2,M
LPa

1,split), (I
LPa

1,sole,M
LPa

1,sole)
]

. Similarly, LPb’s offer is
[

(ILPb

1,split/2,M
LPb

1,split), (I
LPb

1,sole,M
LPb

1,sole)
]

.11

The GP can either accept both LPs’ split offers, or accept one of the sole offers, or reject both

offers.

(iii) If the LPs’ offers are rejected, the GP makes another offer; and so on.

We assume that delay in reaching an agreement is costly. Following convention (e.g., Binmore,

Rubinstein, and Wolinsky (1986)), we capture this by assuming that between each round of of-

fers, there is an exogenous probability p that the bargaining process will terminate without an

agreement.12

If no agreement is reached, each party receives its outside option. For the incumbent LPs, this

equals the riskfree return, rf . The GP’s outside option depends on what outside investors are

willing to offer if no agreement has been reached. We assume that outside investors cannot observe

(or at least cannot verify) the bids made prior to bargaining breaking down. Therefore, they do not

know whether bargaining has broken down for exogenous reasons or because one of the parties has

simply refused to bargain any further. We furthermore assume that an incumbent LP can always

counter any offer an outside investor makes.

The GP’s outside option is then zero, because outside investors face a winner’s curse: Any

outside offer would only be accepted if it reduced outside investors’ expected utility. Why? If the

outside offer resulted in a gain in expected utility for the investor who made it, it would immediately

be countered by an incumbent LP, who could increase the fee offered to the GP slightly and still

enjoy an increase in his own expected utility. As a result, an outside offer would only be successful

if the GP’s type was sufficiently low so that the incumbents chose not to counter the offer. Outside

11Restricting incumbent LP offers to supply either half or all of the capital for the follow-on fund simplifies the
analysis while allowing the LPs to compete against each other. Given the parallels between our setup and the
procurement setup of Anton and Yao (1989), our results should be robust to allowing for splits other than a half.
This is because each LP effectively can veto any split other than the most collusive one by offering the GP a very
unattractive fee for providing his share of the funds. See Anton and Yao (1989, p. 539) for an example that shows
that results on supplier collusion do not hinge on restricting offers to be for either half or all of the amount.

12In the VC setting, this could capture the possibility that the GP’s network contacts become stale while he is
fundraising, or that another GP makes deals with the relevant entrepreneurs.
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investors will therefore rationally withdraw from the market.

The fund size that maximizes joint surplus: To solve for the Nash equilibrium strategies,

we first derive the optimal follow-on fund sizes in the split and sole cases, i.e., the fund sizes that

maximize the joint surplus of the GP and LPs in each case. These will depend on the GP’s skill,

µi, which we denote using superscript i: Ii1,split and Ii1,sole.

Split case: Ii1,split solves

max
I1

E
(

UGP |µi
)

+ 2E
(

ULP |µi
)

(7)

where

E
(

UGP |µi
)

= 1− e−γWGP
3 = 1− e−γ[WGP

0 +2M0+2M1] (8)

E
(

ULP |µi
)

= 1− E
(

e−γWLP
3 |µi

)

(9)

As we show in Appendix A, this yields an optimal fund size of

Ii1,split =
E
(

A3|µ
i
)

1 + γ 1
2σ

2Ii1,split
− 1 (10)

=
−
(

1 + γ 1
2σ

2
)

+

√

(

1 + γ 1
2σ

2
)2

− 2γσ2 [1− E (A3|µi)]

γσ2
. (11)

Sole case: If only one LP invests in the follow-on fund, maximizing the joint surplus implies

max
I1

E
(

UGP |µi
)

+ E
(

ULP |µi
)

. (12)

As we show in Appendix A, this yields an optimal fund size of

Ii1,sole =
E
(

A3|µ
i
)

1 + γσ2Ii1,sole
− 1 (13)

=
−
(

1 + γσ2
)

+

√

(1 + γσ2)2 − 4γσ2 [1− E (A3|µi)]

2γσ2
. (14)
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Discussion: Regardless of whether one or two LPs invest in the follow-on fund, the optimal fund

size does not depend on the fee, M1. Instead, M1 simply determines how the surplus is shared.

The optimal fund size does, however, depend on the number of LPs in the follow-on fund. The

term γ 1
2σ

2Ii1,split is the risk adjustment to the cost of capital in the split case. It is only half as

large as the risk-adjustment to the cost of capital in the case of a single LP, γσ2Ii1,sole. This implies

that Ii1,split > I i1,sole. Finally, regardless of the number of LPs who invest, the optimal fund size

increases in GP skill (as reflected in E
(

A3|µ
i
)

) and decreases in risk aversion γ and risk σ2.

Both Ii1,split and I i1,sole equal zero for E
(

A3|µ
i
)

= 1. Since E
(

A3|µ
i
)

= a + 2µi, this implies

that the cutoff GP type for a follow-on fund generating no joint surplus is given by a+2µi = 1 ⇐⇒

µi = 1−a
2 . We denote this value of µi by µ∗.

Nash equilibrium strategies, fund size, and fee: The following proposition states the equi-

librium outcome of the bargaining game for sufficiently high risk aversion and fund risk.

Proposition 1: Define

M∗
1

(

µi
)

= − ln
(

x
(

µi
))

/γ (15)

x
(

µi
)

= the real root of the cubic equation

2eb(µi)x(µi)
3 − x(µi)

2 = 0 (as derived in Appendix A) (16)

b
(

µi
)

= γ
1

2

[

E
(

A3|µ
i
)

ln
(

1 + I i1,split
)

− Ii1,split
]

−
1

8
γ2σ2

(

Ii1,split
)2

. (17)

Then, provided that

1

2

[

E
(

A3|µ
i
)

ln
(

1 + Ii1,split
)

− I i1,split
]

−
1

8
γσ2

(

Ii1,split
)2

−M∗
1

(

µi
)

(18)

>
[

E
(

A3|µ
i
)

ln
(

1 + Ii1,sole
)

− Ii1,sole
]

−
1

2
γσ2

(

Ii1,sole
)2

− 2M∗
1

(

µi
)

as p −→ 0, the following is a subgame perfect equilibrium:

(a) All offers involve fund sizes that maximize the joint surplus given the number of LPs investing:

13



IGP
1,split, I

LPa

1,split, and ILPb

1,split all equal I
i
1,split, and IGP

1,sole, I
LPa

1,sole, and ILPb

1,sole all equal Ii1,sole (and Ii1,split

and Ii1,sole are zero for µi < µ∗).

(b) LPs prefer
[

Ii1,split/2,M
∗
1

(

µi
)

]

to
[

Ii1,sole, 2M
∗
1

(

µi
)

]

.

(c) Denote by MLP,∗
1,split and MGP,∗

1,split the fees (paid by each LP) such that (i) LPa and LPb are

indifferent between accepting the GP’s split offer and having their own split offers accepted in the

next round and (ii) the GP is indifferent between accepting the LPs’ split offers and having his own

split offer accepted in the next round. As p −→ 0, MLP,∗
1,split and MGP,∗

1,split both converge to M∗
1

(

µi
)

.

(d) The GP’s strategy is to always offer
[

(Ii1,split/2,M
GP,∗
1,split), (I

i
1,sole, 2M

GP,∗
1,split)

]

and always reject

offers that imply total fees below 2MLP,∗
1,split. LPa and LPb follow identical strategies. Each of them

always offers
[

(Ii1,split/2,M
LP,∗
1,split), (I

i
1,sole, 2M

LP,∗
1,split)

]

whenever it is the LPs’ turn to make an offer

and always rejects offers that imply total fees above 2MGP,∗
1,split.

Given (b) and (d), the equilibrium outcome of the bargaining game is immediate agreement

with both LPs accepting the GP’s first split offer. The total fee is thus 2M∗
1

(

µi
)

, the fund size is

Ii1,split, and each LP invests I i1,split/2 and pays fees of M∗
1

(

µi
)

.

Proof of Proposition 1: See Appendix A.

Corollary 1: For given skill µi and thus E
(

A3|µ
i
)

, condition (18) in Proposition 1 is satisfied for

γ and σ2 sufficiently high. Specifically, for a given µi and thus E
(

A3|µ
i
)

, there exists a function

γ∗
(

σ2, E
(

A3|µ
i
))

that is monotonically decreasing in σ2 such that deviating is not optimal for

γ > γ∗
(

σ2, E
(

A3|µ
i
))

. Furthermore, γ∗
(

σ2, E
(

A3|µ
i
))

is increasing in E
(

A3|µ
i
)

, which implies

that higher values of γ and σ2 are needed for the condition to be satisfied for GPs with greater

skill.

Corollary 1 is represented graphically in Figure 2, which depicts the values of γ and σ2 for

which the condition in Proposition 1 holds, for various values of E
(

A3|µ
i
)

.

Discussion: Condition (18) in Proposition 1 is intuitive. It compares an LP’s risk-adjusted cash

flows after fees in the split case to the case in which the LP instead becomes the sole investor.

Being the sole investor involves paying twice the fee (plus an epsilon amount to get the GP to

14



prefer having a sole LP) and bearing more risk, but allows the LP to provide all the capital for the

fund rather than splitting it with another LP. The fund size will be smaller with a sole investor,

as the idiosyncratic risk is then borne by a single LP, and condition (18) reflects this. Corollary 1

clarifies when the condition will hold. Not surprisingly, this will be the case when risk aversion or

idiosyncratic fund risk is high, in which case earning all of the fund’s cash flow, rather than half of

it, fails to compensate for bearing the additional risk and paying all of the fees.13

Corollary 2: Proposition 1 implies that LPs earn positive risk-adjusted cash flows in follow-on

funds, even after fees, and that these risk-adjusted cash flows increase in the GP’s skill, µi.

We prove Corollary 2 in Appendix A.

As we will show shortly, the risk-adjusted return after fees (i.e., the cash flow after fees divided

by the amount invested) also increases in µi. This, in turn, is what generates persistence.

C. Fund Size and Fee in First-Time Funds

As no learning has taken place yet, the LP market is perfectly competitive at t = 0. Thus, LPs

have no bargaining power and all GPs offer LPs contracts that give the GP the maximum expected

utility, subject to each LP achieving an expected utility (across investing in both first and follow-

on fund, if raised) that equals the LP’s outside option. We refer to this as the LPs’ participation

constraint. We proceed under the assumption that condition (18) in Proposition 1 holds.

With two LPs investing in both funds raised by a given GP, we have

WLP
3 = WLP

0 +
1

2
(A2 ln (1 + I0)− I0) +

1

2

[

A3 ln
(

1 + I i1,split
)

− Ii1,split
]

−M0 −M∗
1

(

µi
)

(19)

and

WGP
3 = WGP

0 + 2M0 + 2M∗
1

(

µi
)

. (20)

13While Appendix A proves that the above is a subgame perfect equilibrium, we cannot prove uniqueness. If one
restricted GP and LP strategies to split offers, then the equilibrium in Proposition 1 would be unique, following the
argument given in the proof of Result 1 in Binmore, Osborne, and Rubinstein (1992). However, the possibility that
the parties can make sole offers complicates the setting so that we are unable to prove uniqueness.
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We first determine the LPs’ participation constraint. We then solve for the fund size that

maximizes the GP’s expected utility subject to this constraint. Not surprisingly, the fund size that

results will be the one that maximizes joint GP and LP surplus, as was the case for follow-on funds.

LPs’ participation constraint: As of t = 0, the GP’s skill is unknown, and so I0 will not depend

on µi. When calculating the LPs’ expected utility, however, expectations must be taken both with

respect to µi and to the shocks A2 and A3. Furthermore, follow-on funds are only raised for GP

skill µi > µ∗, and thus expectations need to be taken accordingly.

Denote 1
2 (A2 ln (1 + I0)− I0) by ZLP

2 and 1
2

(

A3 ln
(

1 + Ii1,split

)

− I i1,split

)

by ZLP
3

(

µi
)

. ZLP
3

(

µi
)

is zero for µi ≤ µ∗. Then

EULP = E
(

1− e−γWLP
3

)

= Eµi

(

E
(

1− e−γWLP
3 |µi

))

(21)

= 1− e−γWLP
0 Eµi

(

e−γ[E(ZLP
2 |µi)−M0]+ 1

2
γ2V (ZLP

2 |µi)e−γ[E(ZLP
3 |µi)−M∗

1 (µi)]+ 1
2
γ2V (ZLP

3 |µi)
)

= 1− e−γWLP
0 Eµi

(

e−γ[E(ZLP
2 |µi)−M0]+ 1

2
γ2V (ZLP

2 |µi)e−b(µi)+γM∗
1 (µi)

)

,

exploiting that cov
(

ZLP
2 , ZLP

3 |µi
)

= 0. The LPs’ participation constraint is that EULP = 1 −

e−γWLP
0 , i.e., that

1 = Eµi

(

e−γ[E(ZLP
2 |µi)−M0]+ 1

2
γ2V (ZLP

0 |µi)e−b(µi)+γM∗
1 (µi)

)

⇐⇒

M0 (I0) = −
1

γ
lnEµi

(

e−γE(ZLP
2 |µi)+ 1

2
γ2V (ZLP

2 |µi)e−b(µi)+γM∗
1 (µi)

)

(22)

where

E
(

ZLP
2 |µi

)

=
1

2

(

E
(

A2|µ
i
)

ln (1 + I0)− I0
)

for any µi (23)

V
(

ZLP
2 |µi

)

=
1

4
σ2I20 for any µi (24)
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and

b
(

µi
)

= γ
1

2

(

E
(

A3|µ
i
)

ln
(

1 + I i1,split
)

− I i1,split
)

−
1

4
σ2
(

Ii1,split
)2

for µi > µ∗ and zero otherwise.

The LPs’ participation constraint simply says that, to the extent that LPs (due to their in-

formational hold-up power) earn a positive risk-adjusted cash flow after fees in follow-on funds

(b
(

µi
)

/γ −M∗
1

(

µi
)

> 0), first-time funds must contribute negatively to expected utility.

First-fund size: The GP picks I0 to maximize his expected utility subject to the LPs’ participation

constraint:

max
I0

Eµi

(

1− e−γWGP
3

)

s.t. M0 = M0 (I0) . (25)

As Eµi

(

1− e−γWGP
3

)

= 1 − e−γWGP
0 e−γ2M0Eµi

(

e−γ2M∗
1 (µi)

)

, and since M∗
1

(

µi
)

from Propo-

sition 1 does not depend on what happens in the first fund, this implies simply choosing the value

of I0 that maximizes M0 (I0), or equivalently

min
I0

Eµi

(

e−γE(ZLP
2 |µi)+ 1

2
γ2V (ZLP

2 |µi)e−b(µi)+γM∗
1 (µi)

)

. (26)

This is equivalent to choosing I0 to maximize the joint surplus without constraints, since

EUGP + 2EULP

= 1− e−γWGP
0 e−γ2M0Eµi

(

e−γ2M∗
1 (µi)

)

+

2
[

1− e−γWLP
0 eγM0Eµi

(

e−γ[E(ZLP
2 |µi)−M0]+ 1

2
γ2V (ZLP

2 |µi)e−b(µi)+γM∗
1 (µi)

)]

(27)

of which only the last expectation depends on I0. This term can be rewritten as
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Eµi

(

e−γE(ZLP
2 |µi)+ 1

2
γ2V (ZLP

2 |µi)e−b(µi)+γM∗
1 (µi)

)

=
1

2µ

∫ µ

µ∗

e−γ 1
2(E(A2|µi) ln(1+I0)−I0)+ 1

8
γ2σ2I20

[

e−b(µi)+γM∗
1 (µi) − 1

]

dµi

+
1

2µ

∫ µ

−µ
e−γ 1

2(E(A2|µi) ln(1+I0)−I0)+ 1
8
γ2σ2I20dµi (28)

Thus, the first-order condition for the optimal first-fund size, I0, is:

∫ µ

−µ
e−γ 1

2(E(A2|µi) ln(1+I0)−I0)+ 1
8
γ2σ2I20

{(

E
(

A2|µ
i
)

(1 + I0)
− 1

)

− γ
1

2
σ2I0

}

dµi +

∫ µ

µ∗

e−γ 1
2(E(A2|µi) ln(1+I0)−I0)+ 1

8
γ2σ2I20

{(

E
(

A2|µ
i
)

(1 + I0)
− 1

)

− γ
1

2
σ2I0

}

[

e−b(µi)+γM∗
1 (µi) − 1

]

dµi

= 0 (29)

The first integral in the first-order condition captures the optimal first-fund size, considering

the fund in isolation. The second term is needed because the presence of a follow-on fund (for

µi > µ∗) affects the optimal first-fund size. Using the expression for M∗
1 derived in Appendix A, we

can show that the term e−b(µi)+γM∗
1 (µi) − 1 in the second integral is always negative for µi > µ∗;

goes to 0 for b
(

µi
)

→ 0; and goes to −1 for b
(

µi
)

→ ∞. As a result, the optimal value of I0

(denoted I∗0 ) is smaller than the value (denote it Ix0 ) that would result if I0 was chosen without

consideration of the follow-on fund.14 Intuitively, the marginal value of increasing fund size I0 is

reduced by the fact that risk-adjusted cash flows are unconditionally (i.e., absent knowledge of µi

at t = 0) positively correlated across a GP’s two funds, both of whose cash flows increase in µi.

First fund fee: While the optimal size of a first fund, I∗0 , cannot be derived in closed form, its

14Ix0 solves
∫ µ

−µ
e−γ 1

2
E(A2|µ

i) ln(1+I0)

{

E(A2|µ
i)

(1+I0)
− 1− γ 1

2
σ2I0

}

dµi = 0. Since e−b(µi)+γM1(µ∗) − 1 < 0, the deriva-

tive in the first-order condition is negative at Ix0 , so I∗0 < Ix0 .
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fee, for any given I0, can be determined directly from the LPs’ participation constraint:

M0 (I0) = −
1

γ
lnEµi

(

e−γE(ZLP
2 |µi)+ 1

2
γ2V (ZLP

2 |µi)e−b(µi)+γM∗
1 (µi)

)

= −
1

γ
ln





1
2µ

∫ µ
µ∗ e

−γ 1
2(E(A2|µi) ln(1+I0)−I0)+ 1

8
γ2σ2I20

[

e−b(µi)+γM∗
1 (µi) − 1

]

dµi

+ 1
2µ

∫ µ
−µ e

−γ 1
2(E(A2|µi) ln(1+I0)−I0)+ 1

8
γ2σ2I20dµi



(30)

D. Performance Persistence

We can now show that our model implies persistence in LP returns after fees. We then derive

additional empirical predictions that should hold if our hold-up model is the correct mechanism

underlying these return patterns. We focus on the case where risk aversion and idiosyncratic risk

are sufficiently high such that Proposition 1 holds.

Definitions: Let rifirst,final denote the realized after-fee return to LPs in GP i’s first fund at t = 2,

rifirst,final =
Ci
2 − 2M0

I0
− 1,

and let rifollow−on,final denote the realized after-fee return LPs earn in GP i’s follow-on fund at

t = 2,

rifollow−on,final =
Ci
3 − 2M∗

1

(

µi
)

Ii1
− 1.

The interim return on first funds, rifirst,interim, is the after-fee return LPs expect to earn in a

first fund of a given GP i, based solely on hard information observable at t = 1. It is given by

rifirst,interim =
E(Ci

2|H
i
1)− 2M0

I0
− 1,

where we omit a superscript i on I0 since it is identical for all GPs.

Implication 1: Persistence in after-fee returns to LPs

(a) In the cross-section of GPs with follow-on funds, a high interim first-fund return predicts a

high final return to the LPs in the GP’s follow-on fund: E
(

rifollow−on,final|r
i
first,interim, µi > µ∗

)
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increases in rifirst,interim.

(b) This is true even after adjusting for idiosyncratic risk: E
(

rifollow−on,final|r
i
first,interim, µi > µ∗

)

−

E
(

γ 1
4σ

2Ii1,split|r
i
first,interim, µi > µ∗

)

increases in rifirst,interim.15

Implication 1 is, of course, what the model is designed to capture. The proof is presented in

Appendix A. One might think that outside investors could simply invest in all follow-on funds

raised by GPs who have high rifirst,interim, thus expecting to earn high risk-adjusted returns on

those follow-on funds. Our model shows why this is not feasible. The winner’s curse problem

described earlier implies that outside investors would only be able to invest with those GPs for

whom their offers implied a reduction in expected utility to investors. This implies that the ‘return-

chasing’ behavior emphasized by Berk and Green (2004) as the mechanism eliminating performance

persistence in mutual funds breaks down in the VC setting when there is asymmetric learning.

E. Additional Empirical Implications

In addition to performance persistence, the model yields further empirical implications concerning

the probability that a follow-on fund is raised, what its size will be, as well as its expected return.

Implications 2a and 3a below concern the impact of learning on fundraising and fund size and

hold whether learning is symmetric or asymmetric. (We derive the outcome of the model for the

symmetric learning case in the proof of Implication 2a in Appendix A.) Implications 2b, 3b and 4,

on the other hand, hold only if learning is asymmetric and so can be used to test the model against

a generic learning story.

In each of the following implications, rifirst,interim directly captures the hard information avail-

able to outside investors at the time of follow-on fundraising, while rifirst,final serves as a proxy for

incumbent LPs’ soft information (i.e., their knowledge of µi).

Implication 2: GP fundraising

15The risk-adjustment is defined as the reduction in expected return such that each LP would be indifferent between
earning the actual rifollow−on,final and earning a riskless return equal to E

(

rifollow−on,final|r
i
first,interim, µi > µ∗

)

−
E
(

γ 1
4
σ2Ii1,split|r

i
first,interim, µi > µ∗

)

.
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(a) Whether or not learning is asymmetric, the probability that a GP raises a follow-on fund

increases in the interim return to LPs on the GP’s first fund:

(i) Under asymmetric learning, P
(

µi > µ∗|rifirst,interim

)

increases in rifirst,interim.

(ii) Under symmetric learning, P
(

H i
1 >

1−a
2 |rifirst,interim

)

increases in rifirst,interim.

(b) If learning is asymmetric, soft information about GP skill helps predict if a follow-on fund is

raised, over and above the hard information available to outside investors: P
(

µi > µ∗|rifirst,interim, rifirst,final

)

increases in rifirst,final.

Implication 3: Follow-on fund size

(a) Whether or not learning is asymmetric, in the cross-section of GPs with follow-on funds, a high

interim return to the LP in the first fund predicts a larger follow-on fund:

(i) Under asymmetric learning, E
(

Ii1|r
i
first,interim, µi > µ∗

)

increases in rifirst,interim.

(ii) Under symmetric learning, E
(

Ii1|r
i
first,interim, H i

1 >
1−a
2

)

increases in rifirst,interim.

(b) If learning is asymmetric, soft information about GP skill predicts follow-on fund size, over and

above the hard information available to outside investors: E
(

Ii1|r
i
first,interim, rifirst,final, µ

i > µ∗
)

increases in rifirst,final.

Implication 4: Follow-on fund returns: If learning is asymmetric, soft information about

GP skill helps predict LP returns in the GP’s follow-on fund, over and above the hard informa-

tion available to outside investors: E
(

rifollow−on,final|r
i
first,interim, rifirst,final, µ

i > µ∗
)

increases in

rifirst,final.

We prove these implications formally in Appendix A. The intuition for these results is straight-

forward. The reason that Implications 2a and 3a hold regardless of whether learning is symmetric

or asymmetric is that they are independent of how the GP and LPs split the surplus of follow-on

funds. They simply follow from the fact that rifirst,interim is informative about the GP’s skill, µi,

and µi in turn determines both whether a follow-on fund is raised and its size if raised.

It is Implications 2b, 3b, and 4 which potentially allow us to discriminate between symmetric
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and asymmetric learning and so to test our model. The intuition for Implication 2b is as follows.

Incumbent LPs learn the GP i’s type µi and the GP can only raise a follow-on fund if they learn that

µi > µ∗. This implies that any variable that contains information (to the econometrician) about

what incumbents have learned about µi helps predict whether a follow-on fund is raised. Specifically,

note that the interim return rifirst,interim is an increasing function of the hard information released

at t = 1, H i
1 :

1 + rifirst,interim =
1
2E(Ci

2|H
i
1)−M0

1
2I0

=
1
2

(

a+ 2H i
1

)

ln (1 + I0)−M0

1
2I0

The final return rifirst,final is an increasing function of both the hard information released at t = 1,

H i
1, and the additional signal H i

2 that becomes public information at t = 2. Because both signals

are functions of skill (i.e., H i
1 = µi + εi and H i

2 = µi + vi), we have that

1 + rifirst,final =
1
2C

i
2 −M0

1
2I0

=
1
2

(

a+H i
1 +H i

2

)

ln (1 + I0)−M0

1
2I0

.

This implies that rifirst,interim fully reveals H i
1, and given H i

1, r
i
first,final fully reveals H i

2. In short,

both H i
1 and H i

2 (and thus both rifirst,interim and rifirst,final) are noisy signals (to the econometri-

cian) about GP type µi and thus both are informative for predicting whether incumbents did in

fact learn that µi > µ∗.

The intuition for Implications 3b and 4 is similar: rifirst,final contains information about GP skill

µi over and above what is contained in rifirst,interim, and both follow-on fund size and the expected

final return on follow-on funds are determined by µi.

F. Additional Funds

Our model assumes that each GP raises at most two funds. In practice, GPs often raise more than

two funds over time. Would our theory predict that persistence remains even when comparing

returns on, say, funds 2 and 3? To examine this, we construct a simplified version of our model (with
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risk neutral agents and non-overlapping funds) in which we allow each GP to raise up to three funds.

This simplified version (available as an online appendix) demonstrates that performance persistence

is present both from fund 1 to 2 and from fund 2 to 3. Intuitively, performance persistence extends

to later funds because only a small amount of information asymmetry is required to induce outside

investors to withdraw from the market. It does not matter whether the information asymmetry is

reduced over time as the performance of later funds is observed. What matters is simply that the

information asymmetry remains positive.

G. Optimality of Asymmetric Learning

Learning is valuable whether it happens symmetrically (with incumbent and outside investors

learning about GP skill at the same speed) or asymmetrically (with incumbent LPs learning faster

than outside investors). It ensures that more skilled GPs receive more capital in follow-on funds and

that low-skill GPs exit the industry. This increases the overall value created by the VC industry.

In expectation across first and follow-on funds, LPs earn no rents in utility terms. This implies

that the benefits of learning go to the GPs, who thus prefer learning to no learning ex ante.

Can asymmetric learning lead to more efficient fundraising than symmetric learning? In our

setting, the answer is yes if LPs find it unattractive to invest in the average GP’s first-time fund

even at a fund fee of zero:

max
I0

Eµi

(

e
−γ

[

1
2
E(Ci

2|µi)− 1
8
γσ2(I0)

2− I0
2

])

< 1.

In a risk-neutral setting, this statement would be equivalent to saying that the average NPV of first-

time funds at the optimal fund size, averaged across GPs, is negative: maxI0 Eµi

(

E
(

Ci
2|µ

i
)

− I0
)

<

0. Under this condition, a GP would not be able to raise a first-time fund (nor any follow-on funds)

if learning was symmetric. However, with asymmetric learning, LPs earn informational rents in

follow-on funds, and these may be sufficient to make up for the expected losses on first-time funds.
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This will be the case if there is enough dispersion in GP skill.

Effectively, with asymmetric learning, an investment in a first fund gives LPs an option to invest

in a follow-on fund, and the value of this option increases in uncertainty about GP skill. If the

option value equals or exceeds the expected loss on first funds, LPs will invest in first funds despite

their negative contribution to expected utility.

The existence of soft information about their skill effectively commits GPs to sharing the value

of follow-on funds with their LPs and thus leads to more efficient fund flows. This is also the

case in standard models of informational hold-up in the banking literature such as Sharpe (1990),

but there investment is inefficient in both periods because interest rates are distorted. No such

distortion is present in the VC setting: Fund contracts specify both an investment level (fund size)

and the division of the fund’s surplus, which, as we have shown, yields first-best fund sizes in each

period.

The fact that contracts between GPs and LPs provide exclusive informational rights to incum-

bent LPs while prohibiting LPs from sharing such information with outsiders is consistent with

GPs recognizing that subjecting themselves to informational hold-up may increase their expected

utility. Of course, even if this is true ex ante, it is clear that GPs who subsequently learn that

they have skill will have an incentive to signal their type to outside investors prior to raising a

follow-on fund. In practice, skilled GPs do try to signal their type, but they are unlikely to do so

with sufficient precision to eliminate the information asymmetry between incumbent and outside

investors. For example, one way that skilled GPs try to signal is by “grandstanding”, i.e., taking

portfolio firms public earlier than may otherwise be optimal (Gompers (1996)). Grandstanding is

unlikely to fully reveal the GP’s type, however, since the number of IPOs is unlikely to be fully

informative about skill.

Finally, explicit long-term contracts might substitute for incumbent LPs engaging in costly

learning. In practice, contracts do not give LPs explicit rights to invest particular amounts at a

particular fee should a follow-on fund be raised, suggesting enforcement problems. From a practical
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standpoint, the problem with long-term contracts is that a court would not be able to enforce either

that the correct GPs raise follow-on funds or that the correct follow-on fund size be raised, unless

the court itself obtained soft information about GP type. In principle, it would be cost-efficient

to have only one party (the court) learn this soft information, rather than having each LP spend

resources doing so. In reality, however, such learning would involve court members meeting with

GPs and portfolio companies etc. on a regular basis, prior to any potential legal action, which is

not consistent with how actual legal processes work.

II. Sample and Data

To examine whether the implications of our model are consistent with empirical patterns observed

in the VC industry, we construct a sample of U.S. VC funds obtained from two databases, Thomson

Reuters’ Venture Economics (VE) and Private Equity Intelligence (PREQIN).16 As Table 2 shows,

our sample contains 2,257 funds raised by 962 VC firms between 1980 and 2002.17 The number

of funds raised per year averages 62 in the 1980s, 106 in the 1990s, and 192 between 2000 and

2002. The average (median) sample fund raised $111.2 million ($46.0 million) in nominal dollars.

Average fund size increased from $30.4 million in 1980 to $46.0 million in 1990, and $201.4 million

in 2000, and then fell to $130.2 million in 2002 following the ending of the late 1990s tech boom.

39% of sample funds are first-time funds and the average fund sequence number is 2.8.18 We use

fund stage focus as a crude control for differences in risk across funds. 54% of sample funds focus

on investing in (usually riskier) early-stage companies.

We are interested in the predictability of fund performance and a VC firm’s ability to raise

16We define as VC funds all funds listed as focusing on start-up, early-stage, development, late-stage, or expansion
investments, as well as those listed as “venture (general)” or “balanced” funds. In cases where VE and PREQIN
classify a fund differently, we verify fund type using secondary sources such as Pratt’s Guide, CapitalIQ, Galante’s,
and a web search. We screen out funds of funds, buyout funds, hedge funds, venture leasing funds, evergreen funds
(i.e., funds without a predetermined dissolution date), corporate VCs, bank-affiliated funds, SBICs, side funds, and
foreign VCs.

17VE has the better coverage. Of the 2,257 sample funds, 729 appear in both VE and PREQIN, 37 appear only in
PREQIN, and the remaining 1,491 appear only in VE.

18While 1980 is our first sample year, not all 1980 vintage funds in the sample are first-time funds. This reflects
the fact that our sample contains VC firms founded prior to 1980.
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follow-on funds. Since VC funds typically have a ten-year life, we track each sample fund through

October 2012, which gives us a minimum of 10 years of performance data, as detailed shortly.

We similarly track each of the 962 VC firms through 2012 to see if they raise subsequent funds

and thereby manage to stay in business. In addition to the 2,257 funds they raise between 1980

and 2002, sample firms raise another 382 funds between 2003 and October 2012. Still, mortality

proves to be high: Using data from CapitalIQ combined with fund histories obtained from VE

and PREQIN, we find that 661 of the 962 VC firms (68.7%) go out of business between 1980 and

2012.19 This gives a lower bound on the prevalence of skill in the VC industry of around 1/3, to

the extent that GPs will fail to raise a follow-on fund if investors learn that their skill µi is less

than the break-even level of skill, µ∗.20 Taking into account that VC firms that survive through

2012 may fail at some point in the future and so are “right-censored”, we estimate that the average

(median) VC firm fails 14.5 (12) years after founding, having raised 2.7 (2) funds over its lifetime.

A. Interim and Final Performance Data

Our model distinguishes between what incumbent LPs know and what outside investors know

at the time they are offered the opportunity to invest in a follow-on fund. To capture this, we

distinguish between ‘interim’ returns, which are observable to all potential investors at the time

of fundraising and constitute ‘hard’ (i.e., verifiable) information based on actual cash flows and

audited net asset values, and ‘final’ or ‘ex post’ returns which proxy for soft information known to

GPs and incumbent LPs at the time of fundraising. As such soft information is unverifiable, it is

not known to outside LPs at the time of follow-on fundraising.

We obtain performance data from VE and PREQIN. VC funds are under no obligation to

disclose performance data publicly though they share data with their incumbent LPs on a regular

basis and with prospective investors whenever they launch a new fund. While these disclosures are

19Defunct VC firms are those CapitalIQ labels “out of business”, “dissolved”, “liquidating”, “no longer investing”,
or “reorganizing.” We also assume that firms that last raised a fund in 2002 or earlier are defunct as of 2012. Some
of these are listed in CapitalIQ as having “launched” a fund in, say 2004, but evidently without success.

20It is an lower bound because VC firms may also fail for idiosyncratic reasons, such as the death of the GP.
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intended to be confidential, data vendors such as VE and PREQIN collect performance data from

LPs and/or GPs for dissemination to subscribers, usually in aggregate form.

Our tests focus on disaggregated (fund-by-fund) IRRs, calculated net of fees and so representa-

tive of an LP’s actual return. A fund’s performance varies over its ten-year life as it makes deals,

exits portfolio companies, or writes off investments.21 We extract time-varying interim IRRs from

VE and PREQIN, where available, for each year a fund is in operation. These allow us to track

performance as it evolves over a fund’s life (or more specifically, as it is revealed to incumbent

LPs and outside investors over time). We also obtain the final IRR, which records a fund’s over-

all performance from inception to the end of its life. Interim IRRs reflect a mixture of objective

cash-on-cash returns in respect of exited investments and changes in the book values of unrealized

investments. Final IRRs consist only of audited cash-on-cash returns. Our IRR data cover the

period 1980 to 2012. Our interim IRRs thus follow the fund annually over at least 10 years, and

our final IRRs are the realized returns after at least 10 years of fund life.

Final IRRs are available for 1,052 of the 2,257 funds (46.6%). The average (median) final IRR

for funds raised between 1980 and 2002 is 15.7% (5.6%).22 There is considerable variation over

time in these averages. While 1980s and 1990s funds earned an average annual return of 10.1% and

27.9%, respectively, funds raised in 2000-2002 have lost 2.4% on average per year through 2012.

We have interim IRRs for 15,205 fund-years in respect of 944 individual funds.23 There are

frequently gaps at the start of a fund’s life, as IRRs are only defined once a fund has experienced

a cash inflow from a sale or has written up an investment, both of which are rare early in a

fund’s life.24 There can also be gaps in the middle or towards the end of a fund’s life, if both VE

and PREQIN encountered difficulty obtaining data for a given fund-year. As a result, we have a

21As Ljungqvist and Richardson (2003) show, over a fund’s life, performance follows a ‘J-curve’, in the sense that
cash-on-cash IRRs (rather than reported interim IRRs) tend to be negative in the first few years as the fund is mainly
in investment mode and then turn positive after five or six years as the fund begins to exit its investments through
IPOs or M&A transactions.

22While the data are thus skewed to the right, winsorizing the data does not materially affect our results.
23We have more than 10x944 fund-years because VE and PREQIN report IRRs beyond a fund’s 10th anniversary.

Usually, IRRs change little after year 10.
24For this reason, VE and PREQIN often mark IRRs as ‘not meaningful’ in the first 2-3 years of a fund’s life.
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complete record of interim performance for each fund-year for only 547 funds. Figure 3 shows how

interim IRRs evolve over the average such fund’s life. In its launch year (fund year 0), the average

fund reports an IRR of 0.6%, rising to 4.1% in year 1, 8.5% in year 2, 10.1% in year 3, 12.2% in

year 4, and 14.2% in year 5, before levelling off at a little under 16% in subsequent years.25

B. How Accurately Do Interim IRRs Forecast Final Performance?

Asymmetric learning implies that incumbent LPs have better information about a fund’s final

return, even before the fund’s 10 years are up, than do outside investors, who only observe hard

information in the form of interim returns. To test this implication, we use final fund returns as

a proxy for the soft information incumbent LPs learn over time by virtue of investing in a GP’s

fund. In other words, we assume that incumbent LPs can more accurately forecast final returns,

even well before the fund’s life is over, than can outside investors. If this proxy for incumbent

LPs’ soft information can predict whether a GP raises a follow-on fund as well as the size and final

performance of the follow-on fund, controlling for publicly available hard information contained in

interim IRRs at the time of fundraising, then learning is plausibly asymmetric.

As a first step in the analysis, we ask how accurately interim IRRs forecast a fund’s final

performance and thus how useful hard information may be to outside investors. Figure 4 shows

box plots of the distribution of ‘forecast errors’ (measured as the difference between final and interim

IRRs) for each year in a fund’s life. Here, we use all 15,205 fund-years for which interim IRR are

available. Two patterns emerge. First, the average forecast error is positive in every fund-year,

which reflects the pattern seen in Figure 3 of average interim returns rising monotonically before

converging on the final IRR. More importantly, the distribution of forecast errors is extremely

noisy in the early fund-years and narrows monotonically over time as funds reach the end of their

ten-year lives. We can think of the noise in interim IRRs as an upper bound on incumbent LPs’

informational advantage over outside investors: If incumbent LPs can predict final IRRs perfectly

25Note that there are no apparent performance differences between funds for which we do and do not have interim
IRRs: Both return between 15% and 16% a year on average over their lifetimes.
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based on their soft information, their forecast errors will be zero. More generally, their forecast

errors will be smaller than those of outside investors who only have access to noisy interim IRRs.

C. First and Follow-on Funds

Implications 1 through 4 relate the interim and final performance of a GP’s first fund to the

likelihood that the GP raises a follow-on fund half way through the life of the first fund, as well as

to the size and performance of such a follow-on fund if raised. The key insight of the model is that

incumbent LPs can make better follow-on investing decisions than outside investors once they have

learned the GP’s type. In practice, it is an empirical question whether this learning is complete

when the GP raises his second fund; after all, the average (median) second fund is raised only 3.1

(3) years into the first fund’s life. At this point in time, the first fund will barely have deployed

all its capital and will in most cases not yet have experienced any exits and so arguably is still too

immature to have generated much information about the GP’s skill. Thus, it is plausible that not

much learning has taken place yet when GPs raise their second funds.

Important learning milestones, in practice, are whether the GP managed to find enough deals to

deploy all his capital and whether any of the deals could be successfully exited. Thus, information

about the GP’s true quality likely takes quite a long time to learn. Exactly when incumbent LPs

learn the GP’s true quality is not observed. With layered funds raised every 3-4 years, it may

take until fund 3 or 4 for a sufficient number of investment successes and failures to materialize

and hence for the incumbent LPs to learn the GP’s true quality. For this reason, our models will

flexibly distinguish between first and follow-on funds, rather than between first and second funds

only.

D. Prior-fund Performance

We use our performance data to proxy for incumbent and outside investors’ information sets as of

the year prior to fundraising. To operationalize this, we identify the GP’s most recent outstanding
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fund. Because VC funds rarely have meaningful IRRs in their first 2 years of operation, as mentioned

earlier, we require this fund be at least 3 years old. If the most recent fund is less than 3 years

old, we skip one vintage and identify the fund prior to that. (This happens in 15% of cases.) We

then record the chosen fund’s interim and final IRRs. For example, ahead of the GP raising his

third fund, we measure the interim IRR of his second fund, if that fund is at least 3 years old, or

else the interim IRR of his first fund. In either case, we measure performance as of the year before

fundraising.

We have prior-fund interim IRRs for 767 follow-on funds and both interim and final IRRs for

684 follow-on funds. Our performance persistence tests additionally require final IRR data for the

follow-on funds themselves. This additional requirement results in samples sizes of 387 and 374

funds when conditioning on interim-only and interim-and-final IRRs, respectively.

Note that we use the performance of only the immediately prior fund to measure the hard

information available to investors. In principle, the performance of older funds, if any, could also

contribute to investors’ information set. However, if performance is indeed persistent, the return

on the immediately prior fund will be a sufficient statistic for the GP’s prior funds. As we will

show, this is indeed the case; conditioning on the performance of older funds does not affect our

results.

III. Empirical Analysis

The focus of our empirical analysis is on the role of asymmetric learning and soft information in

explaining performance persistence and future fundraising in VC. We first replicate the motivating

fact of our paper, namely that VC fund performance is persistent. We then ask if privately avail-

able soft information can predict performance and fundraising over and above publicly available

hard information and find that it can. Finally, we discuss possible alternative explanations for

persistence.
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A. Persistence, Learning, and Soft Information

A.1. Performance Persistence

We begin by replicating Kaplan and Schoar’s (2005) persistence test in our larger dataset. In column

1 of Table 3, we regress a fund’s ex post IRR on log fund size, the ex post IRR of the VC firm’s

previous fund, and vintage-year effects. Standard errors are clustered by VC firm. Like Kaplan

and Schoar, we find that fund performance increases with fund size and prior-fund performance

(p < 0.001).

One concern regarding the persistence result is selection bias: Not every VC fund reports an

IRR, and it is possible that those that do are those that experience persistent good performance. To

explore the extent of this bias, we estimate a persistence regression with exit rates as the dependent

variable instead of IRRs. Hochberg, Ljungqvist, and Lu (2007) define exit rates as the fraction of a

fund’s investments that were exited through an IPO or an M&A transaction over the course of the

fund’s ten-year life. Exit rates can thus be computed for all funds. As the estimates in column 2

show, we continue to find strong evidence of persistence using this alternative performance measure.

A.2. What Type of Information Predicts Returns?

According to Implication 1a, a high interim return on one fund should predict a high final return

on the GP’s next fund. We test this in column 3 of Table 3. The results strongly support the

prediction. The coefficient on the prior-fund interim IRR, measured as of the year before the

current fund was raised, is positive and highly statistically significant (p = 0.004).

Implication 1b states that interim returns should be informative even after adjusting for id-

iosyncratic risk. Since VC funds are not traded, traditional asset pricing proxies for idiosyncratic

risk are not available. Instead, we follow Kaplan and Schoar (2005) and include a dummy variable

that equals 1 for funds classified as investing in early-stage companies as a crude control for dif-

ferences in risk-taking across funds. Figure 5 shows kernel density estimates for the final returns

of early-stage and late-stage funds. The distribution of early-stage fund returns is considerably
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more fat-tailed, consistent with the interpretation that early-stage funds take more risk. A formal

Kolmogorov-Smirnov test confirms that the two distributions are significantly different from each

other (p = 0.002). In column 4 of Table 3, we see that average returns among early-stage funds are

6.9 percentage points higher than among late-stage funds (p = 0.075). Controlling for risk using

this proxy does not, however, change our conclusion that interim returns significantly predict the

future returns of follow-on funds. (Indeed, the point estimates are nearly identical in columns 3

and 4.) This supports Implication 1b.

If learning is indeed asymmetric, as our model assumes, soft information about GP skill should

help predict LP returns in the GP’s next fund, over and above the hard information available to

outside investors at the time the next fund is raised. This is Implication 4 of the model. This

implication, along with those relating future fundraising to soft information, potentially allows us

to discriminate between symmetric and asymmetric learning and so to test our model.

In column 5, we run a horse race between the prior fund’s interim IRR (measured as of the year-

end prior to the year the GP raised the current fund) and its future ex post return. As predicted,

both correlate positively and statistically significantly with the next fund’s final IRR. The point

estimate is five times larger, and less noisy, for ex post than for interim IRRs. This suggests that

ex post IRRs contain more information about future performance than do interim IRRs.26 A look

at the regression R2 confirms this. Compared to column 4, adding ex post returns substantially

increases the adjusted R2, from 16.7% to 23%. Thus, the ex post IRR of a GP’s previous fund

appears to be highly informative about the performance of the GP’s next fund. This pattern is

consistent with the informational assumptions of our model: Information not yet publicly known

at the time of fundraising (i.e., ex-post IRRs) predicts returns on follow-on funds over and above

hard information known at the time of fundraising (i.e., interim IRRs).

One potential confound that could spuriously lead to greater persistence with respect to ex

26This remains the case if we condition not only on the prior fund’s interim IRR but on hard information relating
to the performance of all the funds the GP managed before. For example, the coefficient on a variable capturing the
highest return the GP ever achieved before the prior fund is insignificant (p = 0.381), and including this variable has
next to no effect on the point estimates of the prior fund’s interim and final IRRs.
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post IRRs than to interim IRRs is the fact (documented in Figures 3 and 4) that average interim

returns rise monotonically over the life of a fund before converging on the final IRR. Suppose that

low-skilled GPs struggle to raise follow-on funds and so tend to raise funds when their prior fund

is older. Then, given the patterns in Figures 3 and 4, they will tend to report higher interim IRRs

than do highly-skilled GPs at the time of fundraising. If low-skilled GPs earn low returns on their

follow-on funds, this will then attenuate the predictive power of interim IRRs relative to ex post

IRRs. A simple way to account for this is to condition on the age of the prior fund. Doing so has

virtually no effect on our findings (see column 6), suggesting that this potential confound is not a

serious concern in the data.

B. Effect of Learning on Fund-Raising

The results discussed in the previous section support Implications 1a and 1b, which hold even if

learning is symmetric. Implication 4, on the other hand, is true only if learning is asymmetric

and the fact that it appears to hold in the data suggests that informational hold-up may be the

underlying cause of performance persistence. We can shed further light on this by relating the

likelihood that a GP raises a follow-on fund, and the size of that follow-on fund if raised, to the

information available to incumbent LPs and outside investors, respectively. Implications 2a and

3a state that publicly available ‘hard’ information should predict future fundraising, as investors

use this information to update their priors about the GP’s type. But if learning is asymmetric,

as our model assumes, then our proxy for incumbent LPs’ ‘soft’ information should predict future

fundraising over and above the publicly available information (Implications 2b and 3b). This

distinction allows us to discriminate between symmetric and asymmetric learning in the data.

B.1. Probability of Future Fundraising

To test Implication 2a, we estimate a Cox hazard model with time-varying covariates, which can

capture how changes in reported interim IRRs affect the probability that a VC firm raises a new
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fund the following year. Column 1 of Table 4 reports the coefficient estimates. Controlling for the

fact that VC firms with larger funds are more likely to raise another fund, we find that higher interim

returns on the previous fund significantly increase the hazard of raising a new fund (p < 0.001). A

one standard deviation increase in the prior fund’s interim IRR as of year t−1 (39.2%) is associated

with an 11.2 percentage-point increase in the likelihood of raising a follow-on fund in year t. This

supports Implication 2a.

Column 2 additionally conditions on the prior fund’s final IRR, which will not be publicly known

until, on average, 7 years later. The results strongly support Implication 2b and thus asymmetric

learning. A one-standard-deviation higher ex post IRR on the previous fund increases the likelihood

that the GP will raise a follow-on fund in year t by 8.3 percentage points (p = 0.001). The

corresponding influence of publicly available interim IRRs, on the other hand, is halved compared

to column 1 (p = 0.024).

B.2. Size of Follow-on Fund

According to Implication 3a, the size of a follow-on fund, if raised, increases in the prior fund’s

interim return. To test this, we need to allow for the possibility that a poorly performing VC firm

will be unable to raise a follow-on fund of any size. (Recall that 661 of the 962 VC firms fail to raise

follow-on funds over our sample period and so go out of business.) This means that the dependent

variable is left-censored and needs to be modeled using a Tobit estimator. The dependent variable

then equals the log fund size if the firm raises a follow-on fund and zero if it does not.

The results are presented in column 3 of Table 4. As predicted, we find that good interim

performance for the GP’s previous fund allows the GP to raise a larger follow-on fund. A one-

standard deviation increase in the previous fund’s interim IRR is associated with a 145% or $49.5

million increase in fund size, from the unconditional mean in the estimation sample of $34.2 million

(p < 0.001). This supports Implication 3a.

When we additionally condition on the prior fund’s final IRR, which outside investors do not
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observe, we find evidence consistent with Implication 3b and so with asymmetric learning. A one-

standard-deviation increase in the ex post IRR on the GP’s previous fund leads to an additional

boost in follow-on fund size of 25.4% or $9.2 million (p = 0.042 in column 4).

C. Alternative Explanations

The evidence in Table 3 shows that future fund returns can be predicted using prior funds’ future ex

post IRRs, which will not be known until some years after fundraising, even controlling for publicly

available information in the form of prior funds’ interim returns. Table 4 then shows that prior

funds’ future ex post IRRs can predict both whether the GP raises a follow-on fund and if so, how

large the follow-on fund will be. A plausible explanation for these findings is that ex post IRRs

correlate with incumbent LPs’ private (soft) information. In other words, incumbent LPs appear

to know something that is not captured by publicly available interim performance measures and

which allows them to make reinvestment decisions that resemble the return-chasing behavior seen

in mutual funds—except that the returns being chased are not yet publicly known.

We are not aware of any alternative explanation for performance persistence that would pre-

dict a differential role for ‘soft’ over ‘hard’ information or that could account for the additional

fundraising patterns we see in the data. Nonetheless, it is worth considering two potential alterna-

tive explanations that have been advanced for Kaplan and Schoar’s (2005) finding that performance

persists in VC.

The main alternative explanation is due to Glode and Green (2011). Set in the context of hedge

funds, their model emphasizes asymmetric learning about the nature of the GP’s strategy. This

allows incumbent LPs to threaten to ‘steal’ the strategy (i.e., reveal it to another GP) and thereby

extract part of the follow-on fund’s surplus, generating persistence. Our model instead formalizes

the informational hold-up resulting from asymmetric learning about skill rather than strategy: How

good is the VC at identifying promising start-ups and screening out losers and how much value

does he add to his investments through strategic advice, help in recruiting talent, and access to his
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rolodex of contacts? If these are skills that incumbent LPs can ‘steal’, Glode and Green’s model

applies. If instead knowledge of these skills enables incumbent LPs to hold the GP up, our model

applies.

Da Rin and Phalippou’s (2011) survey, discussed in the introduction, attempts to test which

of these two models better applies in the VC setting. As our Table 1 shows, only 13.1% of LPs

in the survey agreed with the following statement: “If the GP didn’t allow me to reinvest, I could

replicate their strategy (myself or in cooperation with another GP).” This suggests that stealing

the investment strategy is less of a concern in the VC setting. In contrast, 72.1% of these LPs

agreed with the statement, “If I didn’t re-invest, other investors would be suspicious and would not

invest,” supporting the informational hold-up story.

An informal argument popular with industry professionals for why GPs do not increase their

fees, eliminating persistence, is that GPs cede a share of their rents to LPs to ensure they can raise

funds even in bad times. This argument does not, however, predict persistence in and of itself:

If every GP cedes a constant amount, there is no persistence. To obtain persistence, skilled GPs

would have to offer LPs a higher return on all their funds while less skilled GPs offer LPs a lower

return on all of theirs. [This could occur if, for instance, the following took place: (1) Less skilled

GPs raised funds only in good times – defined as times where investors require lower expected

returns to invest – and skilled GPs raised funds in both good and bad times, and (2) each GP

offered an expected return on all his funds equal to the average return investors require across the

funds he raises.27 We would then observe what looks like performance persistence, but it would be

a result of differences in required discount rates in different periods.

It is not obvious that a suitably augmented practitioner story would have anything to say about

the predictive power of soft information in the form of final returns, over and above publicly observ-

able interim returns. Still, it is worth attempting to empirically distinguish it from informational

hold-up as follows. The practitioner story implies that we should not see persistence in the subset

27Exactly why such expected return smoothing would be used is not clear in this story.
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of skilled GPs (those who are able to raise funds in both good and bad times). In Table 5, we

thus restrict our sample to GPs that raise funds in both good and bad times, using four different

classifications of “good” and “bad” periods. We observe strong performance persistence in all four

cases, which is hard to reconcile with the practitioner story.

IV. Discussion and Conclusion

Performance in the VC market appears persistent, suggesting (some) VCs have skill. But why

then do successful VCs not eliminate excess demand for their next funds by raising their fees? We

propose a model of learning and informational hold-up that can explain performance persistence

in the VC market. We argue that persistence requires that the LP market is perfectly competitive

when a GP raises his first fund and that his investors subsequently gain market power. We propose

that the source of their market power is asymmetric learning: Investing in a fund gives an LP the

opportunity to collect soft information about the GP’s skill, while outside investors can observe only

hard information such as realized returns. Thus, incumbent LPs have an informational advantage

when the GP raises his next fund. This imposes a winner’s curse on outside investors—the better-

informed incumbent LPs will outbid them whenever the GP has skill—and enables incumbent LPs

to hold the GP up when he next raises a fund. Performance is persistent because the hold-up

problem prevents the GP from raising his fees to the point where investors simply break even.

The driving force of our model is initial uncertainty about GP skill which is resolved more

quickly among incumbent LPs than among potential outside investors. Thus, the information sets

of incumbent LPs and outside investors diverge over time. According to our model, the information

held by the better-informed incumbent LPs predicts not only the performance of the GP’s next

fund (since it is informative about his skill) but also whether the GP can raise a follow-on fund

and, if so, of what size. We verify these predictions with one of the most comprehensive datasets on

U.S. VC funds assembled to date. Though the inference is necessarily indirect, these patterns point

to incumbent LPs obtaining private information about GP skill and so are at least consistent with
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asymmetric learning. Survey evidence that directly addresses the hold-up story provides additional

supportive evidence for our theory.
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A Appendix: Derivations and Proofs

Derivation of optimal fund sizes for the case of two and one LPs, respectively:

Two LPs: Ii1,split solves

max
I1

E
(

UGP |µi
)

+ 2E
(

ULP |µi
)

(A.1)

where

E
(

UGP |µi
)

= 1− e−γWGP
3 = 1− e−γ[WGP

0 +2M0+2M1] (A.2)

and

E
(

ULP |µi
)

= 1− E
(

e−γWLP
3 |µi

)

= 1− E
(

e−γ[WLP
0 + 1

2
(A2 ln(1+I0)−I0)−M0+

1
2
(A3 ln(1+I1)−I1)−M1]|µi

)

= 1− e−γ[WLP
0 −M0−M1]E

(

e−γ 1
2
[A2 ln(1+I0)−I0]|µi

)

E
(

e−γ 1
2
[A3 ln(1+I1)−I1]|µi

)

(A.3)

We exploit the fact that A2 and A3 are independent, conditional on µi. Furthermore, since A3

is normally distributed, and since V
(

A3|µ
i
)

= σ2(I1)
2

[ln(1+I1)]2
, we obtain E

(

e−γ 1
2
[A3 ln(1+I1)−I1]|µi

)

=

e−γ 1
2(E(A3|µi) ln(1+I1)−I1)+ 1

8
γ2σ2(I1)

2

.

Maximizing the joint surplus thus implies solving:

max
I1

(

E
(

A3|µ
i
)

ln (1 + I1)− I1
)

− γ
1

4
σ2 (I1)

2 (A.4)

which has solution:

Ii1,split =
E
(

A3|µ
i
)

1 + γ 1
2σ

2I1,split (µi)
− 1 ⇐⇒ (A.5)

Ii1,split =
−
(

1 + γ 1
2σ

2
)

+

√

(

1 + γ 1
2σ

2
)2

− 2γσ2 [1− E (A3|µi)]

γσ2
. (A.6)

One LP: If only one LP invests in the follow-on fund, maximizing the joint surplus implies

max
I1

E
(

UGP |µi
)

+ E
(

ULP |µi
)

. (A.7)
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Here, the term E
(

e−γ 1
2
[A3 ln(1+I1)−I1]|µi

)

in the LP’s expected utility changes to E
(

e−γ[A3 ln(1+I1)−I1]|µi
)

compared to the two-LP scenario. This implies maximizing E
(

A3|µ
i
)

ln (1 + I1)− I1 − γ 1
2σ

2 (I1)
2,

which results in a smaller joint-surplus-maximizing fund size of

Ii1,sole =
E
(

A3|µ
i
)

1 + γσ2Ii1,sole
− 1 ⇐⇒ (A.8)

Ii1,sole =
−
(

1 + γσ2
)

+

√

(1 + γσ2)2 − 4γσ2 [1− E (A3|µi)]

2γσ2
. (A.9)

It follows that both I i1,split and I i1,sole equal zero for E
(

A3|µ
i
)

= 1. Since E
(

A3|µ
i
)

= a + 2µi,

this implies that the cutoff GP type for a follow-on fund generating no joint surplus is given by

a+ 2µi = 1 ⇐⇒ µi = 1−a
2 . We denote this value of µi by µ∗.

Note that the LPs’ risk-adjusted cash flow before fees in the split case,

Y =
1

2

[

E
(

A3|µ
i
)

ln
(

1 + I i1,split
)

− I i1,split
]

−
1

8
γσ2

(

Ii1,split
)2

, (A.10)

is zero for E
(

A3|µ
i
)

= 1 (i.e., for µi = µ∗) and positive for E
(

A3|µ
i
)

> 1. This follows from

dY

dE (A3|µi)
=

1

2
ln
(

1 + I i1,split
)

+

[

1

2

(

E
(

A3|µ
i
)

1 + I i1,split
− 1

)

− γ
1

4
σ2Ii1,split

]

dIi1,split
dE (A3|µi)

(A.11)

where 1
2 ln

(

1 + Ii1,split

)

> 0 and

[

1
2

(

E(A3|µi)
1+Ii1,split

− 1

)

− γ 1
4σ

2Ii1,split

]

> 0 for E
(

A3|µ
i
)

> 1, and

dIi1,split
dE(A3|µi)

≥ 0 for all values of E
(

A3|µ
i
)

.

Proof of Proposition 1

(a) Part (a) is true for any value of p. Consider an offer
[

(IGP
1,split/2,M

GP
1,split), (I

GP
1,sole, 2M

GP
1,sole)

]

with

fund sizes IGP
1,split and IGP

1,sole that are different from Ii1,split and Ii1,sole. By definition, I i1,split and Ii1,sole

are the joint-surplus-maximizing fund sizes, and so the GP can always make himself better off by

changing the proposed fund sizes to I i1,split and Ii1,sole and adjusting the proposed fees to make the

LPs equally happy. A similar argument applies to offers made by the LPs.

(b) The LPs’ expected utility from (Ii1,split/2,M
∗
1 ) is

E
(

ULP
split|µ

i
)

= 1− e−γ[WLP
0 +ZLP

2 ]e−γ 1
2(E(A3|µi) ln(1+Ii1,split)−Ii1,split)+

1
2
γ2( 1

2)
2
σ2(Ii1,split)

2
+γM∗

1
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where ZLP
2 is defined as in the main text. The LPs’ expected utility from (Ii1,sole, 2M

∗
1 ) is:

E
(

ULP
sole|µ

i
)

= 1− e−γ[WLP
0 +ZLP

2 ]e−γ(E(A3|µi) ln(1+Ii1,sole)−Ii1,sole)+
1
2
γ2σ2(Ii1,sole)

2
+γ2M∗

1 .

It follows that E
(

ULP
split|µ

i
)

> E
(

ULP
sole|µ

i
)

iff the condition stated in Proposition 1 holds.

(c) With two LPs investing, the fees MLP,∗
1,split and MGP,∗

1,split that make the GP and the LPs indifferent

between accepting the other party’s split offer now or having their own split offer accepted in the

next offer round solve the following two equations. For any p, the GP’s indifference condition is

1− e−γ[WGP
0 +2M0+2MLP,∗

1,split] = p
[

1− e−γ[WGP
0 +2M0]

]

+ (1− p)
[

1− e−γ[WGP
0 +2M0+2MGP,∗

1,split]
]

⇐⇒

e−γ2MLP,∗
1,split = p+ (1− p) e−γ2MGP,∗

1,split ⇐⇒

eγ2M
GP,∗
1,split =

1− p

e−γ2MLP,∗
1,split − p

Each LP’s indifference condition is

1− e−γWLP
0 E

(

e−γZLP
2 |µi

)

E
(

e−γ[ 12 (A3 ln(1+I1)−I1)−MGP,∗
1,split]|µi

)

= p
[

1− e−γWLP
0 E

(

e−γZLP
2 |µi

)]

+(1− p)
[

1− e−γWLP
0 E

(

e−γZLP
2 |µi

)

E
(

e−γ[ 12(A3 ln(1+Ii1,split)−Ii1,split)−MLP,∗
1,split]|µi

)]

⇐⇒

E
(

e−γ[ 12(A3 ln(1+Ii1,split)−Ii1,split)−MGP,∗
1,split]|µi

)

= p+ (1− p)E
(

e−γ[ 12(A3 ln(1+Ii1,split)−Ii1,split)−MLP,∗
1,split]|µi

)

⇐⇒

e−b+γMGP,∗
1,split = p+ (1− p) e−b+γMLP,∗

1,split

where ZLP
2 = 1

2 (A2 ln (1 + I0)− I0)−M0 (the LP’s payoff from the first-time fund) and

b
(

µi
)

= γ
1

2

[

E
(

A3|µ
i
)

ln
(

1 + I i1,split
)

− Ii1,split
]

−
1

8
γ2σ2

(

I i1,split
)2

.
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Combining the two indifference conditions implies

e−b

(

1− p

e−γ2MLP,∗
1,split − p

)1/2

= p+ (1− p) e−b+γMLP,∗
1,split .

Denote e−γMGP,∗
1,split by x. Then the above can be rewritten as

e−b

(

1− p

x2 − p

)1/2

= p+ (1− p) e−b 1

x

e−2b

(

1− p

x2 − p

)

= p2 + (1− p)2 e−2b 1

x2
+ 2p (1− p) e−b 1

x

e−2b (1− p) = p2
(

x2 − p
)

+ (1− p)2 e−2b
(

1−
p

x2

)

+ 2p (1− p) e−b 1

x

(

x2 − p
)

e−2b (1− p)x2 = p2
(

x4 − px2
)

+ (1− p)2 e−2b
(

x2 − p
)

+ 2p (1− p) e−b
(

x3 − px
)

(1− p)x2 = p2e2b
(

x4 − px2
)

+ (1− p)2
(

x2 − p
)

+ 2p (1− p) eb
(

x3 − px
)

0 = p2e2bx4 + 2p (1− p) ebx3 +
[

p (p− 1)− p3e2b
]

x2 − 2p (1− p) ebpx− p (1− p)2

0 = pe2bx4 + 2 (1− p) ebx3 +
[

(p− 1)− p2e2b
]

x2 − 2 (1− p) ebpx− (1− p)2

0 = pe2bx4 + 2eb (1− p)x3 +
(

−1 + p− p2e2b
)

x2 − 2peb (1− p)x− (1− p)2 .

This is a continuous function of p. Thus, as p goes to zero, x solves

0 = 2ebx3 − x2 − 1

which has the solution:

x = −
−1

6eb
−

1

6eb

(

1

2

[

−2− 27 ∗ 4e2b +

√

[−2− 27 ∗ 4e2b]
2
− 4

])1/3

−
1

6eb

(

1

2

[

−2− 27 ∗ 4e2b −

√

[−2− 27 ∗ 4e2b]
2
− 4

])1/3

.

Given this solution for x, MGP,∗
1,split = − ln(x)

γ and MLP,∗
1,split equals MGP,∗

1,split by the GP’s indifference

condition when p → 0. We denote this common value of MGP,∗
1,split and MLP,∗

1,split by M∗
1 .

(d) We need to show that each party’s strategy is an optimal response to the strategies of the other

two parties.
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First consider the GP. The GP cannot do better by increasing MGP
1,split or MGP

1,sole above M∗
1

since LPs will reject all such offers. Furthermore, under the proposed strategies, LPs accept a fee

of M∗
1 , and therefore the GP has no incentive to suggest a lower fee.

Next consider LPa (similar arguments apply to LPb). LPa cannot do better by decreasing

MLPa

1,split or MGP
1,sole below M∗

1 since the GP’s strategy rejects all such offers. Note that, in this

respect, it is important that each LP offers a sole fee as high as 2M∗
1

(

µi
)

. If they offered less,

the other LP could reduce his offered split fee below M∗
1

(

µi
)

and still be asked to invest. But if

both LPs lowered their offered split fees below M∗
1

(

µi
)

, the GP would pick one of the LPs’ sole

offers. This would be strictly worse for both LPs (by point (b) for the investing LP and because

the non-investing LP would earn nothing from the follow-on fund).

Furthermore, under the proposed strategies, the GP accepts offers with a fee of M∗
1 , so LPa

has no incentive to increase MLPa

1,split above M∗
1 . If LPa did so, then the GP would accept both

LPs’ split offers (earning fees of MLPa

1,split +M∗
1 > 2M∗

1 ), and therefore LPa would end up with the

same investment of I i1,split/2 but would pay a higher fee. In addition, LPa has no incentive to

increase MLPa

1,sole above 2M∗
1 . Doing so would result in the GP accepting LPa’s sole offer, but since

LPa has higher utility from (I i1,split/2,M
∗
1 ) than (Ii1,sole, 2M

∗
1 ), he will also have higher utility from

(Ii1,split/2,M
∗
1 ) than (Ii1,sole,M

LPa

1,sole) with MLPa

1,sole > 2M∗
1 .

Proof of Corollary 2:

Recall that for µi > µ∗ (i.e., for E
(

A3|µ
i
)

> 1), the LPs’ risk-adjusted cash flow in a follow-on

fund before fees (for the case of two investors),

1

2

[

E
(

A3|µ
i
)

ln
(

1 + Ii1,split
)

− I i1,split
]

−
1

8
γσ2

(

Ii1,split
)2

, (A.12)

is positive. Note that this expression is simply b
(

µi
)

/γ. The LPs’ risk-adjusted cash flow after fees

is therefore

1

2

[

E
(

A3|µ
i
)

ln
(

1 + I i1,split
)

− Ii1,split
]

−
1

8
γσ2

(

I i1,split
)2

−M∗
1

(

µi
)

(A.13)

=
b
(

µi
)

γ
−M∗

1

(

µi
)

=
b
(

µi
)

γ

[

1−
γM∗

1

(

µi
)

b (µi)

]

=
b
(

µi
)

γ

[

1 +
ln
(

x
(

µi
))

b (µi)

]

.

Using the expression for x as a function of b from the proof of Proposition 1, it is easy to verify
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(by plotting
ln(x(µi))

b(µi)
as a function of b

(

µi
)

) that
γM∗

1 (µi)
b(µi)

goes monotonically from 1/2 to 1/3 as

b
(

µi
)

goes from 0 to ∞, implying that M∗
1 goes from 1

2

b(µi)
γ to 1

3

b(µi)
γ as b

(

µi
)

goes from 0 to ∞.

In sum, the risk-adjusted cash flow after fees to each LP,
b(µi)
γ − M∗

1

(

µi
)

, is always positive for

µi > µ∗ and

b
(

µi
)

γ
−M∗

1

(

µi
)

→











1
2

b(µi)
γ as b

(

µi
)

→ 0

2
3

b(µi)
γ as b

(

µi
)

→ ∞
. (A.14)

Since b
(

µi
)

increases in µi, the above implies that
b(µi)
γ −M∗

1

(

µi
)

also increases in µi. In other

words, the risk-adjusted cash flow before fees
b(µi)
γ increases in µi, and the fraction of this that is

paid in fees decreases in µi from 1/2 (for the marginal follow-on fund with b
(

µi
)

just above zero,

i.e., µi just above µ∗) to 1/3 (as µi → ∞ and thus b
(

µi
)

→ ∞). Thus, the LPs’ risk-adjusted cash

flow after fees also increases in µi.

Proof of Implication 1

We prove Implication 1b. Since the risk-adjustment is increasing in µi, Implication 1a follows

immediately from Implication 1b. Proving Implication 1b requires us to prove that the expectation

of

1 + rifollow−on,final,risk−adj =

1
2C

i
3 −M∗

1

(

µi
)

− 1
8γσ

2
(

Ii1,split

)2

1
2I

i
1,split

conditional on rifirst,interim is increasing in rifirst,interim.

Step 1: We start by showing that E
(

rifollow−on,final,risk−adj |µ
i, µ > µi > µ∗

)

is positive and in-

creasing in µi.

E
(

rifollow−on,final,risk−adj |µ
i, µ > µi > µ∗) =

1
2E
(

Ci
3|µ

i, µ > µi > µ∗)−M∗
1

(

µi
)

− 1
8γσ

2
(

Ii1,split

)2

1
2I

i
1,split

=
b
(

µi
)

/γ −M∗
1

(

µi
)

1
2I

i
1,split

with

b
(

µi
)

= γ
1

2

[

E
(

A3|µ
i
)

ln
(

1 + Ii1,split
)

− Ii1,split
]

−
1

8
γ2σ2

(

Ii1,split
)2

and

1 + Ii1,split =
E
(

A3|µ
i
)

1 + γ 1
2σ

2Ii1,split
.
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We have already shown that M∗
1

(

µi
)

is a fraction of b
(

µi
)

/γ. This is less than 1 and decreasing

in µi. Thus, E
(

rifollow−on,final,risk−adj |µ
i, µ > µi > µ∗

)

is positive. A sufficient condition for

E
(

rifollow−on,final,risk−adj |µ
i, µ > µi > µ∗

)

to be increasing in µi is that
b(µi)
Ii1,split

is increasing in µi.

d

dµi

(

b
(

µi
)

Ii1,split

)

=

∂

(

b(µi)
Ii1,split

)

∂I1 (µi)

dIi1,split
dµi

+

∂

(

b(µi)
Ii1,split

)

∂E (A3|µi)

dE
(

A3|µ
i
)

dµi

=
1

(

Ii1,split

)2

(

db
(

µi
)

dIi1,split
Ii1,split − b

(

µi
)

)

dIi1,split
dµi

+γ
1

2

ln
(

1 + Ii1,split

)

Ii1,split

dE
(

A3|µ
i
)

dµi

=
1

(

Ii1,split

)2

(

−b
(

µi
)) dI i1,split

dµi
+ γ

1

2

ln
(

1 + I i1,split

)

I i1,split

dE
(

A3|µ
i
)

dµi

where
db(µi)
dIi1,split

= 0 since Ii1,split maximizes b
(

µi
)

. Furthermore, from the expression for Ii1,split,

dIi1,split
dµi

=

E(A3|µi)
dµi

[

1 + γ 1
2σ

2 + γσ2
(

Ii1,split

)2
]

and

1 + γ
1

2
σ2
(

I i1,split
)2

= E
(

A3|µ
i
)

− Ii1,split

(

1 + γ
1

2
σ2

)

.
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Therefore,

0 <
d

dµi

(

b
(

µi
)

Ii1,split

)

0 <
1

(

Ii1,split

)2

(

−b
(

µi
)) 1
[

1 + γ 1
2σ

2 + γσ2
(

Ii1,split

)]

+γ
1

2

ln
(

1 + I i1,split

)

Ii1,split

b
(

µi
)

< γ
1

2
ln
(

1 + I i1,split
)

[

Ii1,split

(

1 + γ
1

2
σ2

)

+ γσ2
(

Ii1,split
)2
]

0 > γ
1

2







(

E
(

A3|µ
i
)

− Ii1,split
(

1 + γ 1
2σ

2
)

− γσ2
(

Ii1,split

)2
)

ln
(

1 + Ii1,split

)

− I i1,split







−
1

8
γ2σ2

(

Ii1,split
)2

0 > γ
1

2







(

1 + γ 1
2σ

2
(

Ii1,split

)2
− γσ2

(

I i1,split

)2
)

ln
(

1 + Ii1,split

)

− Ii1,split







−
1

8
γ2σ2

(

Ii1,split
)2

Ii1,split >

(

1− γ
1

2
σ2
(

Ii1,split
)2
)

ln
(

1 + I i1,split
)

− γ
1

4
σ2
(

Ii1,split
)2

which is true since Ii1,split > ln
(

1 + I i1,split

)

for any Ii1,split > 0 and 1 − γ 1
2σ

2
(

Ii1,split

)2
< 1 and

γ 1
4σ

2
(

I i1,split

)2
> 0.

Step 2: We then write E
(

rifollow−on,final,risk−adj |r
i
first,interim, µ > µi > µ∗

)

as a function of

E
(

rifollow−on,final,risk−adj |µ
i, µ > µi > µ∗

)

and the distribution of µi conditional on rifirst,interim.

E
(

rifollow−on,final,risk−adj |r
i
first,interim, µ > µi > µ∗)

=

∫ µ

µ∗

E
(

rifollow−on,final,risk−adj |µ
i
)

f
(

µi|rifirst,interim, µ > µi > µ∗) dµi.

Note that

1 + rifirst,interim =
1
2E(Ci

2|H
i
1)−M0

1
2I0

=
1
2

(

a+H i
1 + E

(

H i
2|H

i
1

))

−M0

1
2I0

=
1
2

(

a+ 2H i
1

)

−M0

1
2I0
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since H i
2 = µi + vi = H i

1 − εi + vi. Therefore, E
(

rifollow−on,final,risk−adj |r
i
first,interim, µi > µ∗

)

will

be increasing in rifirst,interim iff E
(

rifollow−on,final,risk−adj |H
i
1, µ

i > µ∗
)

is increasing in H i
1. So we

are interested in

E
(

rifollow−on,final,risk−adj |H
i
1, µ > µi > µ∗)

=

∫ µ

µ∗

E
(

rifollow−on,final,risk−adj |µ
i
)

f
(

µi|H i
1, µ > µi > µ∗) dµi

and

d

dH i
1

E
(

rifollow−on,final,risk−adj |H
i
1, µ > µi > µ∗)

=

∫ µ

µ∗

E
(

rifollow−on,final,risk−adj |µ
i
) df

(

µi|H i
1, µ > µi > µ∗)

dH i
1

dµi

Since H i
1 = µi + εi with εi ∼ N

(

0, σ2
ε

)

, σ2
ε =

1
2
σ2(Ii0)

2

[ln(1+Ii0)]
2 , we have H i

1|µ
i, µ > µi > µ∗ ∼ N

(

µi, σ2
ε

)

and

f
(

H i
1|µ > µi > µ∗) =

∫ µ

µ∗

f
(

H i
1|µ

i, µ > µi > µ∗) f
(

µi|µ > µi > µ∗) dµi

=

∫ µ

µ∗

1
√

2πσ2
ε

e
− 1

2

(

z
µi

)2

dµi 1

µ− µ∗ =
1

µ− µ∗ [Φ (zµ)− Φ (zµ∗)]

f
(

µi|H i
1, µ > µi > µ∗) = f

(

H i
1|µ

i, µ > µi > µ∗) f
(

µi|µ > µi > µ∗)

f
(

H i
1|µ > µi > µ∗)

=
1

√

2πσ2
ε

e
− 1

2

(

z
µi

)2 1
µ−µ∗

1
µ−µ∗ [Φ (zµ)− Φ (zµ∗)]

=
1
σε
φ
(

zµi

)

[Φ (zµ)− Φ (zµ∗)]

for µ > µi > µ∗, 0 otherwise, where φ and Φ are the pdf and cdf of the standard normal distribution,

zµi =
Hi

1−µi

σε
, zµ =

Hi
1−µ
σε

, and zµ∗ =
Hi

1−µ∗

σε
. Note that this simply says that µi|H i

1, µ > µi > µ∗

is truncated normal, with truncation at −µ and µ∗. Since φ
(

zµi

)

= 1√
2π
e
− 1

2

(

z
µi

)2

,
dφ

(

z
µi

)

dHi
1

=
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− 1√
2π
e
− 1

2

(

z
µi

)2
z
µi

σε
= −φ

(

zµi

) z
µi

σε
, we have

df
(

µi|H i
1, µ > µi > µ∗)

dH i
1

=
− 1

σε
φ
(

zµi

) z
µi

σε

Φ (zµ)− Φ (zµ∗)
−

1
σε
φ
(

zµi

)

[Φ (zµ)− Φ (zµ∗)]
2

[

φ (zµ)

(

1

σε

)

− φ (zµ∗)

(

1

σε

)]

=
1
σε
φ
(

zµi

)

1
σε

Φ (zµ)− Φ (zµ∗)

{

−zµi −
φ (zµ)− φ (zµ∗)

Φ (zµ)− Φ (zµ∗)

}

= f
(

µi|H i
1, µ > µi > µ∗) 1

σε

{

−zµi −
φ (zµ)− φ (zµ∗)

Φ (zµ)− Φ (zµ∗)

}

.

The function f
(

µi|H i
1, µ > µi > µ∗) 1

σε
is positive for all values of µi.

{

−zµi −
φ(zµ)−φ(zµ∗)
Φ(zµ)−Φ(zµ∗)

}

is in-

creasing in µi (as
φ(zµ)−φ(zµ∗)
Φ(zµ)−Φ(zµ∗)

does not depend on i). Thus, there exists a value of µi, call it µx, which

will depend onH i
1 and for which

df(µi|Hi
1,µ>µi>µ∗)
dHi

1
= 0 for µi = µx,

df(µi|Hi
1,µ>µi>µ∗)
dHi

1
< 0 for µi < µx,

and
df(µi|Hi

1,µ>µi>µ∗)
dHi

1
> 0 for µi > µx. It follows that d

dHi
1
E
(

rifollow−on,final,risk−adj |H
i
1, µ > µi > µ∗

)

=
∫ µ
µ∗ E

(

rifollow−on,final,risk−adj |µ
i
)

df(µi|Hi
1,µ>µi>µ∗)
dHi

1
dµi is positive (for all values of H i

1) because (i)
∫ µ
µ∗

df(µi|Hi
1,µ>µi>µ∗)
dHi

1
dµi = 0 and (ii) E

(

rifollow−on,final,risk−adj |µ
i
)

is positive and increasing, imply-

ing that the positive values of
df(µi|Hi

1,µ>µi>µ∗)
dHi

1
in the expression

∫ µ
µ∗ E

(

rifollow−on,final,risk−adj |µ
i
)

df(µi|Hi
1,µ>µi>µ∗)
dHi

1
dµi are multiplied by a larger positive number than are the negative values of

df(µi|Hi
1,µ>µi>µ∗)
dHi

1
.

Proof of Implication 2

We prove Implication 2a for both our asymmetric information setup and for the symmetric in-

formation case in which both incumbent LPs and outside investors obtain the same information

about the GP’s type at t = 1 (namely the hard information H i
1). Implication 2b applies only in

the asymmetric-learning setup of our model.

(a) Asymmetric-Learning Case: Note that

1 + rifirst,interim =
1
2E(Ci

2|H
i
1)−M0

1
2I0

=
1
2

(

a+H i
1 + E

(

H i
2|H

i
1

))

ln (1 + I0)−M0

1
2I0

=
1
2

(

a+ 2H i
1

)

ln (1 + I0)−M0

1
2I0

.
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This implies that rifirst,interim fully reveals H i
1:

H i
1 =

1

2

(

[

(

1 + rifirst,interim
) 1

2
I0 +M0

]

1
1
2 ln (1 + I0)

+ a

)

Since H i
1 is positively related to rifirst,interim, it follows that P

(

µi > µ∗|rifirst,interim, µ > µi > −µ
)

is increasing in rifirst,interim iff P
(

µi > µ∗|H i
1, µ > µi > −µ

)

is increasing in H i
1.

Following steps similar to those in Step 2 of the proof of Implication 1,

f
(

µi|H i
1, µ > µi > −µ

)

=
1
σε
φ
(

zµi

)

[Φ (zµ)− Φ (z−µ)]
, for µ > µi > −µ, 0 otherwise,

where zµi =
Hi

1−µi

σε
, zµ =

Hi
1−µ
σε

, and z−µ =
Hi

1+µ
σε

and

df
(

µi|H i
1, µ > µi > −µ

)

dH i
1

= f
(

µi|H i
1, µ > µi > −µ

) 1

σε

{

zµi +
φ (zµ)− φ (z−µ)

Φ (zµ)− Φ (z−µ)

}

.

We are interested in P
(

µi > µ∗|H i
1, µ > µi > −µ

)

=
∫ µ
µ∗ f

(

µi|H i
1, µ > µi > −µ

)

dµi and in partic-

ular

dP
(

µi > µ∗|H i
1, µ > µi > −µ

)

dH i
1

=

∫ µ

µ∗

df
(

µi|H i
1, µ > µi > −µ

)

dH i
1

dµi.

The expression f
(

µi|H i
1, µ > µi > −µ

)

is positive for all values of µi between −µ and µ. The

expression
{

zµi +
φ(zµ)−φ(z−µ)
Φ(zµ)−Φ(z−µ)

}

is increasing in µi (since
φ(zµ)−φ(z−µ)
Φ(zµ)−Φ(z−µ)

does not depend on µi). Thus,

there exists a value of µi, call it µx, which will depend on H i
1 and for which

df(µi|Hi
1,µ>µi>−µ)
dHi

1
= 0

for µi = µx,
df(µi|Hi

1,µ>µi>−µ)
dHi

1
< 0 for µi < µx, and

df(µi|Hi
1,µ>µi>−µ)
dHi

1
> 0 for µi > µx. Since

∫ µ
−µ

df(µi|Hi
1,µ>µi>−µ)
dHi

1
dµi = 0, it follows that if µ∗ > µx then all values of

df(µi|Hi
1,µ>µi>−µ)
dHi

1
in the

integral for
dP(µi>µ∗|Hi

1,µ>µi>−µ)
dHi

1
are positive, so

dP(µi>µ∗|Hi
1,µ>µi>−µ)

dHi
1

is positive. If µ∗ < µx, then

df(µi|Hi
1,µ>µi>−µ)
dHi

1
< 0 for all µi < µ∗, so

dP
(

µi > µ∗|H i
1, µ > µi > −µ

)

dH i
1

=

∫ µ

µ∗

df
(

µi|H i
1, µ > µi > −µ

)

dH i
1

dµi

= 0−

∫ µ∗

−µ

df
(

µi|H i
1, µ > µi > −µ

)

dH i
1

dµi > 0.

Symmetric-Information Case: To proceed with the proof for the symmetric information case,

we must first state the solution of the model for that case. With symmetric learning, GPs have
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no reason to limit the number of LPs in a given fund. We assume that there is a mass of one

of investors who each invests in all VC funds raised. With a continuum of GPs, all risk being

idiosyncratic, and each LP investing in each of a continuum of GP types, all risk diversifies away

from the perspective of a given LP. Each LP’s wealth at t = 3 is:

WLP
3 = WLP

0 + Eµi

[

Ai
2 ln (1 + I0)− I0 −M0

]

+ EHi
1

[

E
(

Ai
3 ln (1 + I1)− I1 −M1|H

i
1

)]

= WLP
0 + [a ln (1 + I0)− I0 −M0] + EHi

1

[

E
(

Ai
3 ln (1 + I1)− I1 −M1|H

i
1

)]

Without informational hold-up, the market for funding remains competitive at all times. At t = 1,

for a GP releasing hard information H i
1 concerning his first fund, the LPs’ participation constraint

for follow-on fund-raising is:

E
(

Ai
3|H

i
1) ln

(

1 + I1
(

H i
1

))

− I1
(

H i
1

))

−M1

(

H i
1

)

= 0.

A given GP thus sets M1

(

H i
1

)

= E
(

Ai
3|H

i
1) ln

(

1 + I1
(

H i
1

))

− I1
(

H i
1

))

. The GP then picks fund

size to maximize M1

(

H i
1

)

, which is simply the NPV of the fund. Our informational structure

implies that

E
(

Ai
3|H

i
1

)

= E
(

a+H i
2F +H i

3F |H
i
1

)

= E
(

a+ 2µi + εiF + viF |H
i
1

)

= a+ 2E
(

µi|H i
1

)

= a+ 2H i
1.

Maximizing the NPV of the fund thus results in:

I1
(

H i
1

)Sym info
= E

(

Ai
3|H

i
1

)

− 1 = a+ 2H i
1 − 1, for H i

1 >
1− a

2
, zero otherwise.

M1

(

H i
1

)Sym info
=

(

a+ 2H i
1 − 1

) (

ln
(

a+ 2H i
1

)

− 1
)

for H i
1 >

1− a

2
, zero otherwise.

The outcome for first funds is similar. At t = 0, LPs’ participation constraint is a ln (1 + I0)− I0−

M0 = 0. A given GP thus sets M0 = a ln (1 + I0) − I0. The GP then picks fund size to maximize

this expression, which is simply the average NPV of the fund, averaging across possible GP types,

resulting in

ISym info
0 = a− 1, MSym info

0 = a (ln (a)− 1) .
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Thus,

1 + rifirst,interim =
E(Ci

2|H
i
1)−MSym info

0

ISym info
0

=

(

a+ 2H i
1

)

ln (a)− a (ln (a)− 1)

a− 1
.

This implies that rifirst,interim fully reveals H i
1. Since follow-on funds are raised iff H i

1 > 1−a
2 , this

means that they are raised iff

rifirst,interim >
ln (a)− a (ln (a)− 1)

a− 1
− 1.

The right-hand-side expression is a constant that is known at t = 0. Denote it by ri,∗first,interim. Thus,

P
(

H i
1 >

1−a
2 |rifirst,interim

)

= 0 for rifirst,interim ≤ ri,∗first,interim and P
(

H i
1 >

1−a
2 |rifirst,interim

)

= 1

for rifirst,interim > ri,∗first,interim, implying that the probability that a GP raises a follow-on fund is

(weakly) increasing in the LP return of the GP’s first fund, rifirst,interim.

(b) Start from our assumptions that

Ci
2 = Ai

2 ln
(

1 + I i0
)

Ai
2 = a+H i

1 +H i
2 = a+ 2µi + εi + vi

H i
1 = µi + εi, H i

2 = µi + vi.

Note that

1 + rifirst,final =
Ci
2 − 2M0

I0
=

Ai
2 ln (1 + I0)− 2M0

I0
=

(

a+H i
1 +H i

2

)

ln (1 + I0)− 2M0

I0

1 + rifirst,interim =
E(Ci

2|H
i
1)− 2M0

I0
=

(

a+H i
1 + E

(

H i
2|H

i
1

))

ln (1 + I0)− 2M0

I0

=

(

a+ 2H i
1

)

ln (1 + I0)− 2M0

I0
.

This implies that rifirst,interim fully reveals H i
1 and given H i

1, r
i
first,final fully reveals H i

2:

H i
1 =

1

2

(

[

(

1 + rifirst,interim
) 1

2
I0 +M0

]

1
1
2 ln (1 + I0)

+ a

)

H i
2 =

(

[

(

1 + rifirst,final
) 1

2
I0 +M0

]

1
1
2 ln (1 + I0)

+ a+H i
1

)

53



SinceH i
2 is positively related to rifirst,final, it follows that P

(

µi > µ∗|rifirst,interim, rifirst,final, µ > µi > −µ
)

is increasing in rifirst,final iff P
(

µi > µ∗|H i
1, H

i
2, µ > µi > −µ

)

is increasing in H i
2.

The information about µi in H i
1 and H i

2 can be summarized by the average H i = 1
2

(

H i
1 +H i

2

)

=

µi+ 1
2

(

εi + vi
)

. Thus, µi = H i− 1
2

(

εi + vi
)

and µi|H i
1, H

i
2 ∼ µi|H i. Furthermore, V

(

H i|µi
)

(denote

it by σ2
H) equals 1

4

(

σ2
ε + σ2

v

)

and

f
(

H i|µ > µi > −µ
)

=

∫ µ

µ∗

f
(

H i|µi, µ > µi > −µ
)

f
(

µi|µ > µi > −µ
)

dµi

=

∫ µ

µ∗

1
√

2πσ2
H

e
− 1

2

(

zavg
µi

)2

dµi 1

2µ
=

1

2µ

[

Φ
(

zavgµ

)

− Φ
(

zavg−µ

)]

with zavg
µi = Hi−µi

σH
, zavgµ = Hi−µ

σH
, and zavg−µ = Hi+µ

σH
(using “avg” to refer to these variables depending

on the average value of H i
1 and H i

2). Thus,

f
(

µi|H i, µ > µi > −µ
)

= f
(

H i|µi, µ > µi > −µ
) f

(

µi|µ > µi > −µ
)

f (H i|µ > µi > −µ)

=
1

√

2πσ2
H

e
− 1

2

(

zavg
µi

)2 1
2µ

1
2µ

[

Φ (zavgµ )− Φ
(

zavg−µ

)] =

1
σH

φ
(

zavg
µi

)

[

Φ (zavgµ )− Φ
(

zavg−µ

)]

for µ > µi > −µ, and 0 otherwise. Thus, µi|H i
1, H

i
2, µ > µi > −µ has a truncated normal

distribution with truncation at −µ and µ. Note that φ
(

zavg
µi

)

= 1√
2π
e
− 1

2

(

zavg
µi

)2

implies
dφ

(

zavg
µi

)

dHi
2

=

− 1√
2π
e
− 1

2

(

zavg
µi

)2
zavg
µi

2σH
= −φ

(

zavg
µi

) zavg
µi

2σH
. Therefore,

df
(

µi|H i
1, H

i
2, µ > µi > −µ

)

dH i
2

=
− 1

σH
φ
(

zavg
µi

) zavg
µi

2σH

Φ (zavgµ )− Φ
(

zavg−µ

)

−

1
σH

φ
(

zavg
µi

)

[

Φ (zavgµ )− Φ
(

zavg−µ

)]2

[

φ
(

zavgµ

)

(

1

2σH

)

− φ
(

zavg−µ

)

(

1

2σH

)]

=

1
σH

φ
(

zavg
µi

)

1
2σH

Φ (zavgµ )− Φ
(

zavg−µ

)

{

−zavg
µi −

φ (zavgµ )− φ
(

zavg−µ

)

Φ (zavgµ )− Φ
(

zavg−µ

)

}

= f
(

µi|H i
1, H

i
2, µ > µi > −µ

) 1

2σH

{

−zavg
µi −

φ (zavgµ )− φ
(

zavg−µ

)

Φ (zavgµ )− Φ
(

zavg−µ

)

}

.

We are interested in P
(

µi > µ∗|H i
1, H

i
2, µ > µi > −µ

)

=
∫ µ
µ∗ f

(

µi|H i
1, H

i
2, µ > µi > −µ

)

dµi and in
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particular,

dP
(

µi > µ∗|H i
1, H

i
2, µ > µi > −µ

)

dH i
2

=

∫ µ

µ∗

df
(

µi|H i
1, H

i
2, µ > µi > −µ

)

dH i
2

dµi.

The expression f
(

µi|H i
1, H

i
2, µ > µi > −µ

)

is positive for all values of µi between −µ and µ. The

expression

{

−zavg
µi −

φ(zavgµ )−φ(zavg−µ )
Φ(zavgµ )−Φ(zavg−µ )

}

is increasing in µi (since
φ(zavgµ )−φ(zavg−µ )
Φ(zavgµ )−Φ(zavg−µ )

does not depend

on µi). Thus, there exists a value of µi, call it µx, which will depend on H i and for which

df(µi|Hi
1,H

i
2,µ>µi>−µ)

dHi
2

= 0 for µi = µx,
df(µi|Hi

1,H
i
2,µ>µi>−µ)

dHi
2

< 0 for µi < µx, and
df(µi|Hi

1,H
i
2,µ>µi>−µ)

dHi
2

>

0 for µi > µx. Since
∫ µ
−µ

df(µi|Hi
1,H

i
2,µ>µi>−µ)

dHi
2

dµi = 0, it follows that if µ∗ > µx then all values of

df(µi|Hi
1,H

i
2,µ>µi>−µ)

dHi
2

in the integral for
dP(µi>µ∗|Hi

1,H
i
2,µ>µi>−µ)

dHi
2

are positive, so
dP(µi>µ∗|Hi

1,H
i
2,µ>µi>−µ)

dHi
2

is positive. If µ∗ < µx, then
df(µi|Hi

1,H
i
2,µ>µi>−µ)

dHi
2

< 0 for all µi < µ∗, so

dP
(

µi > µ∗|H i
1, H

i
2, µ > µi > −µ

)

dH i
2

=

∫ µ

µ∗

df
(

µi|H i
1, H

i
2, µ > µi > −µ

)

dH i
2

dµi

= 0−

∫ µ∗

−µ

df
(

µi|H i
1, H

i
2, µ > µi > −µ

)

dH i
2

dµi > 0.

Proof of Implication 3

As was the case for Implication 2a, we prove Implication 3a for both our asymmetric-learning

setup and the symmetric-information version of our model in which both incumbent and outside

investors obtain the same information about the GP’s type at t = 1 (namely, the hard information

H i
1). Implication 3b applies only in the asymmetric-learning case.

(a) Asymmetric-Learning Case: If raised, the follow-on fund’s size is

I i1,split =
−
(

1 + γ 1
2σ

2
)

+

√

(

1 + γ 1
2σ

2
)2

− 2γσ2
[

1− E
(

Ai
3|µ

i
)]

γσ2

where E
(

Ai
2|µ

i
)

> 1 for µi > µ∗. Since Ai
2 = a+H i

1+H i
2 = a+2µi + εi + vi, we have E

(

Ai
2|µ

i
)

=

a+ 2µi, so Ii1,split is positive and increasing in µi.
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Since H i
1 is positively related to rifirst,interim,

H i
1 =

1

2

(

[

(

1 + rifirst,interim
) 1

2
I0 +M0

]

1
1
2 ln (1 + I0)

+ a

)

it follows that E
(

Ii1,split|r
i
first,interim, µ > µi > −µ∗

)

is increasing in rifirst,interim iff

E
(

Ii1,split|H
i
1, µ > µi > −µ∗

)

is increasing in H i
1. Furthermore,

E
(

Ii1,split|H
i
1, µ > µi > −µ∗) =

∫ µ

µ∗

Ii1,splitf
(

µi|H i
1, µ > µi > µ∗) dµi

dE
(

Ii1,split|H
i
1, µ > µi > −µ∗

)

dH i
1

=

∫ µ

µ∗

Ii1,split
df
(

µi|H i
1, µ > µi > µ∗)

dH i
1

dµi

This is positive following the same arguments as in Step 2 of the proof of Implication 1 (simply

replace E
(

rifollow−on,final,risk−adj |µ
i
)

by Ii1,split).

Symmetric-Information Case: From the proof of Implication 2a for the symmetric-information

case, we have that if raised, i.e., if H i
1 >

1−a
2 , the follow-on fund’s size is

I1
(

H i
1

)Sym info
= a+ 2H i

1 − 1

and

1 + rifirst,interim =

(

a+ 2H i
1

)

ln (a)− a (ln (a)− 1)

a− 1
.

Combining these two expressions, we get

I1
(

H i
1

)Sym info
=

(

1 + rifirst,interim

)

(a− 1) + a (ln (a)− 1)

ln (a)
− 1

which is a linear and increasing function of rifirst,interim. Since E
(

Ii1|r
i
first,interim, H i

1 >
1−a
2

)

=

I1
(

H i
1

)Sym info
, this proves the implication for the symmetric-information case.

(b) If raised, the follow-on fund’s size is

I i1,split =
−
(

1 + γ 1
2σ

2
)

+

√

(

1 + γ 1
2σ

2
)2

− 2γσ2
[

1− E
(

Ai
2|µ

i
)]

γσ2
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where E
(

Ai
2|µ

i
)

> 1 for µi > µ∗. Since Ai
2 = a+H i

1+H i
2 = a+2µi + εi + vi, we have E

(

Ai
2|µ

i
)

=

a+ 2µi. Thus, Ii1,split is positive and increasing in µi.

From the expressions in the above proof expressing H i
1, H

i
2 as linear increasing functions of

rifirst,interim and rifirst,final, it follows that E
(

Ii1,split|r
i
first,interim, rifirst,final, µ > µi > −µ∗

)

is in-

creasing in rifirst,final iff E
(

Ii1,split|H
i
1, H

i
2, µ > µi > −µ∗

)

is increasing in H i
2. Furthermore,

E
(

Ii1,split|H
i
1, H

i
2, µ > µi > −µ∗) =

∫ µ

µ∗

Ii1,splitf
(

µi|H i
1, H

i
2, µ > µi > µ∗) dµi

dE
(

Ii1,split|H
i
1, H

i
2, µ > µi > −µ∗

)

dH i
2

=

∫ µ

µ∗

Ii1,split
df
(

µi|H i
1, H

i
2, µ > µi > µ∗)

dH i
2

dµi.

From the same steps as in the above proof,

f
(

µi|H i, µ > µi > µ∗) =

1
σH

φ
(

zavg
µi

)

[

Φ (zavgµ )− Φ
(

zavgµ∗

)] , for µ > µi > µ∗, 0 otherwise.

with zavg
µi = Hi−µi

σH
, zavgµ = Hi−µ

σH
, and zavgµ = Hi+µ∗

σH
. Thus, again using the same steps as in the

above proof,

df
(

µi|H i
1, H

i
2, µ > µi > −µ

)

dH i
2

= f
(

µi|H i
1, H

i
2, µ > µi > µ∗) 1

2σH







−zavg
µi −

φ (zavgµ )− φ
(

zavgµ∗

)

Φ (zavgµ )− Φ
(

zavgµ∗

)







.

The expression f
(

µi|H i
1, H

i
2, µ > µi > µ∗) is positive for all values of µi.

{

−zavg
µi −

φ(zavgµ )−φ
(

zavg
µ∗

)

Φ(zavgµ )−Φ
(

zavg
µ∗

)

}

is increasing in µi (since
φ(zavgµ )−φ

(

zavg
µ∗

)

Φ(zavgµ )−Φ
(

zavg
µ∗

) does not depend on i). Thus, there exists a value of

µi, call it µx (which will depend on H i) for which f
(

µi|H i
1, H

i
2, µ > µi > µ∗) = 0 for µi = µx,

f
(

µi|H i
1, H

i
2, µ > µi > µ∗) < 0 for µi < µx, and f

(

µi|H i
1, H

i
2, µ > µi > µ∗) > 0 for µi > µx. There-

fore,
dE(Ii1,split|Hi

1,H
i
2,µ>µi>−µ∗)

dHi
2

is positive (for all values of H i
0) since

∫ µ
µ∗

df(µi|Hi
1,H

i
2,µ>µi>µ∗)

dHi
0

dµi = 0

and Ii1,split is positive and increasing, implying that the positive values of
df(µi|Hi

1,H
i
2,µ>µi>µ∗)

dHi
2

in

the expression
∫ µ
µ∗ I

i
1,split

df(µi|Hi
1,H

i
2,µ>µi>µ∗)

dHi
2

dµi are multiplied by a larger positive number than are

the negative values of
df(µi|Hi

1,H
i
2,µ>µi>µ∗)

dHi
2

.

Proof of Implication 4
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The final return on a follow-on fund is

1 + rifollow−on,final =
Ci
3 − 2M∗

1

(

µi
)

Ii1,split
.

From the proof of Implication 1 we know that E
(

rifollow−on,final|µ
i, µ > µi > µ∗

)

is positive and

increasing in µi, since we showed that E
(

rifollow−on,final,risk−adj |µ
i, µ > µi > µ∗

)

is increasing in

µi and since the risk adjustment γ 1
4σ

2
(

Ii1,split

)2
is positive and increasing in µi. From the expres-

sions in the proof of Implication 2 expressing H i
1, H

i
2 as linear increasing functions of rifirst,interim

and rifirst,final, it follows that E
(

rifollow−on,final,risk−adj |r
i
first,interim, rifirst,final, µ > µi > −µ∗

)

is

increasing in rifirst,final iff E
(

rifollow−on,final,risk−adj |H
i
1, H

i
2, µ > µi > −µ∗

)

is increasing in H i
2.

Furthermore,

E
(

rifollow−on,final,risk−adj |H
i
1, H

i
2, µ > µi > −µ∗)

= E
(

rifollow−on,final,risk−adj |µ
i, µ > µi > µ∗) f

(

µi|H i
1, H

i
2, µ > µi > µ∗) dµi

dE
(

rifollow−on,final,risk−adj |H
i
1, H

i
2, µ > µi > −µ∗

)

dH i
2

=

∫ µ

µ∗

E
(

rifollow−on,final,risk−adj |µ
i, µ > µi > µ∗) df

(

µi|H i
1, H

i
2, µ > µi > µ∗)

dH i
2

dµi

This is positive following the same steps as in the proof of Implication 3.
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Figure 1. Fund Risk 
The figure shows the distribution of net IRRs for mutual funds, hedge funds, VC funds, and buyout funds in the U.S. for the 

period from 1980 to 2006. The graphs present, for each set of funds, Gaussian kernel densities of net annual IRRs from 

CRSP (for mutual funds), the CISDM Hedge Funds database available on WRDS (for hedge funds), PREQIN (for buyout 

funds), and combination of PREQIN and Venture Economics (for VC funds). The unit of observation in the hedge-fund and 

mutual fund kernels is a fund-year; the unit of observation in the other two kernels is a fund, as VC and buyout funds last 

10 years. The data contain 48,314 observations for hedge funds, 222,205 observations for mutual funds, 1,208 observations 

for VC funds, and 669 observations for buyout funds. Net IRRs in excess of 200% p.a. exist but are not shown. 
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Figure 2. Illustration of Corollary 1. 
The figure illustrates Corollary 1 by depicting the values of γ and σ (shaded area) for which the condition in Proposition 1 

holds, for values of E(A3|μ
i
) in the set [1.1 1.5 2 3].  

 

 

σ 

γ 

—  E(A3|μ
i
) = 1.1;   —  E(A3|μ

i
) = 1.5;   —  E(A3|μ

i
) = 2;   —  E(A3|μ

i
) = 3.    



Figure 3. Average Interim IRRs Over a Fund’s Lifetime. 
The figure shows the average interim IRR, net of fees, in percent over a fund’s 10-year lifetime for a sample of 547 VC 

funds for which a complete time series of year-by-year interim IRR data is available.  
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Figure 4. How Accurately Do Interim IRRs Forecast Final Performance? 
The figure shows box plots of the distribution of forecast errors (= final IRR – interim IRR, in %) for each year in a fund’s 

life, using all 15,205 fund-years for which interim IRR are available. Each box shows the 75
th

 percentile (the upper hinge of 

the box), the median (the line drawn inside the box), and the 25
th

 percentile (the lower hinge).The whiskers extending from 

each box denote the  5
th

 and 95
th

  percentiles.  
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Figure 5. Early Versus Late-Stage Funds 
The figure shows the distribution of final IRRs for early- and late-stage VC funds in our sample, respectively. Each graph 

presents a Gaussian kernel density using optimal half-widths and 100 estimation points.  
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Table 1. Survey Evidence: Do LPs Receive Priority in Follow-on Funds and If So, Why? 
Da Rin and Phalippou (2011) conduct a survey of 2,000 limited partners in private equity and venture capital funds between 

2008 and 2010. The response rate is in excess of 10%. Survey question 3.7 is directly relevant to our model, and this table 

reproduces the answers. Results look nearly identical if only the responses of U.S.-based LPs are tabulated.  

 

 Percent of LPs who answered:   

Question: Always Sometimes Never 

Do not 

know 

Yes 

(Always+Sometimes) 

 

N 

        

3.7 In your experience, 

does investing in a fund 

give you priority over 

other investors when the 

GP raises subsequent 

funds? 

44.4 43.1 7.5 5.0 87.5  239 

    

 Percent of LPs who answered:   

Question: No 

Yes, 

possibly 

Yes, 

definitely 

Do not 

know 

Yes                           

(Yes, possibly  

+ Yes, definitely)  N 

        

If yes, why do you think 

you receive priority? 

       

        

3.7.1 If I didn't re-invest, 

other investors would be 

suspicious and would not 

invest. 

17.4 56.7 15.4 10.5 72.1  201 

        

3.7.2 If the GP didn't 

allow me to reinvest, I 

could replicate their 

strategy (myself or in 

cooperation with another 

GP). 

80.3 11.1 2.0 6.6 13.1   198 

        



Table 2. Descriptive Statistics.  
The sample consists of 2,257 U.S. venture capital funds raised by 962 VC firms between 1980 and 2002, as reported Venture Economics (VE) and Private Equity 

Intelligence (PREQIN).  We define as VC funds all funds listed in VE or PREQIN as focusing on start-up, seed, early-stage, development, late-stage, or expansion 

investments, as well as those listed as “venture (general)” or “balanced” funds. In cases where VE and PREQIN classify a fund differently, we verify fund type using 

secondary sources such as Pratt's Guide, CapitalIQ, Galante's, and a web search. We screen out funds of funds, buyout funds, hedge funds, venture leasing funds, 

evergreen funds (i.e., funds without a predetermined dissolution date), and side funds. Fund size is in nominal dollars. A first-time fund is the first fund raised by a 

VC firm, assigned fund sequence number 1. Subsequent follow-on funds are numbered accordingly. Early-stage funds are those focused on start-up, seed, early-

stage, or development investments. The final IRR is a fund’s annual internal rate of return estimated over its (typically 10-year) life, net of management and 

performance fees, using VE and PREQIN data through October 2012. 

 

  Number of sample funds                  

  of which  Fund size ($m)      Performance 

vintage all 

only 

in VE 

only in 

PREQIN 

in 

both   mean median   

fraction 

first-

time 

funds 

mean 

fund 

sequence 

no. 

fraction 

early-

stage 

funds   

no. of 

funds 

with final 

IRR data 

mean 

final 

IRR 

(%) 

sd 

final 

IRR 

(%) 

median 

final 

IRR 

(%) 

1980 37 31 4 2  30.4 20.0  0.68 1.4 0.35  17 13.0 12.7 12.9 

1981 46 38 1 7  25.4 20.0  0.70 1.6 0.35  20 11.1 15.5 10.4 

1982 62 51 1 10  24.8 15.6  0.71 1.5 0.37  29 5.2 14.4 6.5 

1983 71 58 1 12  33.2 21.0  0.46 1.8 0.41  42 8.6 11.4 7.8 

1984 81 67 1 13  33.9 23.4  0.47 2.0 0.43  54 5.2 9.6 3.9 

1985 58 39 1 18  41.2 20.0  0.38 2.1 0.47  32 10.6 10.9 12.1 

1986 55 36 1 18  54.6 22.0  0.47 2.1 0.49  34 8.5 8.1 6.6 

1987 78 62 0 16  35.7 23.6  0.41 2.2 0.40  55 7.0 15.1 7.2 

1988 56 31 2 23  67.9 32.8  0.27 2.5 0.54  41 15.2 15.5 12.5 

1989 75 42 1 32  68.0 30.5  0.36 2.7 0.51  51 16.3 31.8 12.2 

1990 45 33 2 10  46.0 35.0  0.40 2.8 0.49  19 17.0 21.6 13.7 

1991 32 21 1 10  43.4 35.0  0.31 2.4 0.47  16 23.6 18.0 22.6 

1992 50 28 0 22  79.0 49.1  0.22 3.2 0.42  29 22.7 27.5 13.2 

1993 73 43 3 27  56.2 35.9  0.34 2.7 0.41  40 27.6 32.7 19.3 

1994 72 38 0 34  86.1 46.5  0.26 3.0 0.50  42 23.3 32.9 17.0 

1995 113 77 1 35  72.3 50.0  0.42 2.6 0.56  55 44.0 58.0 27.2 

1996 95 64 1 30  71.6 50.0  0.47 2.6 0.52  43 59.3 99.3 20.8 

1997 162 100 3 59  84.0 57.0  0.44 2.8 0.51  75 40.6 72.3 9.5 

1998 171 103 1 67  137.3 74.5  0.28 3.3 0.58  83 25.8 100.7 3.9 

1999 249 163 2 84  171.9 100.0  0.36 3.2 0.65  82 -5.1 13.9 -5.2 

2000 332 213 2 117  201.4 100.0  0.35 3.2 0.65  110 -2.1 12.8 -1.7 

2001 171 110 4 57  209.6 61.5  0.35 3.2 0.64  57 -1.7 10.8 -0.6 

2002 73 43 4 26  130.2 45.0  0.32 3.6 0.52  26 -3.4 9.3 -2.5 

                   

1980-2002 2,257 1,491 37 729  111.2 46.0  0.39 2.8 0.54  1,052 15.7 47.6 5.6 

                                  



Table 3. VC Fund Performance Persistence. 
This table reports tests of Implications 1 and 4 of the model, regarding performance persistence across funds managed by the same VC firm. We regress the ex post 

performance of fund N on the performance of the fund manager’s previous fund (N-1) and controls for fund size (in log $m) and risk (an indicator for funds with a 

focus on early-stage ventures). The dependent variable in columns 1 and 3 through 6 is a fund’s ex post IRR, net of carry and fees, measured at the end of the fund’s 

usually ten-year life. (The sample accordingly consists of funds that are at least ten years old as of 2012, that is, funds raised between 1980 and 2002.) In column 2, 

we measure performance using exit rates, defined as the fraction of a fund’s investments that were exited through an IPO or an M&A transaction over the course of 

the fund’s ten-year life. The performance of a fund manager’s previous fund is measured either ex post (i.e., after ten years) or using the “interim” IRR that the 

previous fund reported in the year before fund N was raised. In terms of the model, ex post returns are considered “soft” information and interim returns are 

considered “hard” information. Columns 1 and 2 replicate Kaplan and Schoar’s results (2005) using IRRs and exit rates, respectively. Columns 3 and 4 test 

Implication 1a and 1b, respectively. Columns 5 and 6 test Implication 4. All models are estimated using OLS with vintage-year fixed effects. Heteroskedasticity-

consistent standard errors, clustered on VC firm, are shown in italics. We use 
***

, 
**

, and 
*
 to denote significance at the 1%, 5%, and 10% level (two-sided), 

respectively.  

 

 Ex post performance of fund N 

 IRR  Exit rate  IRR 

 Performance measure:  (1)  (2)  (3) (4) (5) (6) 

         

Previous fund’s performance         

ex post IRR or exit rate of fund N-1  0.247
***

  0.319
***

    0.302
***

 0.301
***

 

 0.068  0.036    0.068 0.069 

interim IRR of fund N-1 as of previous year     0.110
***

 0.104
***

 0.060
**

 0.058
**

 

     0.038 0.036 0.028 0.028 

Controls         

log size of fund N-1 0.055
***

  0.019
***

  0.069
***

 0.077
***

 0.061
***

 0.059
***

 

 0.014  0.006  0.023 0.023 0.022 0.021 

dummy = 1 if fund N has early-stage focus      0.088
*
 0.069

*
 0.069

*
 

      0.049 0.041 0.041 

years since raising fund N-1        -0.004 

        0.016 

Diagnostics         

Vintage year FE yes  yes  yes yes yes yes 

Wald test: all coeff. = 0 7.5
***

  10.9
***

  7.3
***

 6.4
***

 8.1
***

 8.2
***

 

Adjusted R
2
 16.3%  17.2%  16.2% 16.7% 23.0% 22.8% 

No. of observations 628  1,079  387 387 374 374 

         

 



Table 4. Effect of Learning on Fund-raising. 
This table reports tests of Implications 2 and 3 of the model, regarding the effect of performance on future fund-raising. 

In columns 1 and 2, we estimate a Cox semi-parametric hazard model with time-varying covariates using annual data. 

This models the hazard (i.e., the instantaneous probability) that a VC firm raises a new fund in year t. We allow a VC 

firm to raise multiple funds in succession by estimating a “multiple-failure” hazard model. Column 1 conditions on the 

size and interim IRR of the VC firm’s “current” fund with meaningful returns, both as of the end of year t-1. (The 

current fund is the VC firm’s highest-numbered fund that is at least 3 years old and in operation at t-1.) Thus, this 

hazard model uses only information that was publicly available to incumbent LP and outside investors at the time of 

fund-raising. It includes all available vintages through 2012; since VC firms have a non-zero probability of raising 

further funds after that date, the hazard model adjusts for right-censoring. Column 2 adds soft information available to 

incumbent LPs (but not outside investors) in the form of the ex post IRR on the VC firm’s current fund as of year t-1. 

This is a measure of soft information about the GP’s performance. Columns 3 and 4 estimate the size of a follow-on 

fund. The dependent variable is the log of the size of the follow-on fund (in $m) if the firm raises a follow-on fund and 

zero if it does not. To code failure to raise a follow-on fund, we identify 661 defunct VC firms in CapitalIQ. The model 

is estimated using Tobit. Column 3 focuses on the interim IRR of the previous fund measured as of the year-end prior to 

the year the GP raises the current fund; if no follow-on fund is raised, the IRR of the previous fund is measured ex post 

(i.e., as of year ten.) Column 4 adds the previous fund’s ex post IRR. Standard errors are shown in italics. They are 

clustered on VC firm in columns 1 and 2; the Tobit estimator in columns 3 and 4 does not support clustering. We use 
***

, 
**

, and 
*
 to denote significance at the 1%, 5%, and 10% level (two-sided), respectively. 

 

 

Prob(follow-

on fund 

raised) 

Prob(follow-

on fund 

raised)  

Log size of 

follow-on 

fund 

Log size of 

follow-on 

fund 

  (1) (2)   (3) (4) 

      

Previous fund’s performance      

interim IRR of fund N-1 as of previous year-end 0.270
***

 0.132
***

  2.178
***

 1.785
***

 

 0.040 0.059  0.260 0.294 

ex post IRR of fund N-1  0.226
***

   0.450
**

 

  0.067   0.221 

Controls      

log fund size  0.195
***

 0.187
***

  1.386
***

 1.417
***

 

 0.025 0.025  0.098 0.101 

      

Diagnostics      

Vintage year FE n.a. n.a.  yes yes 

Wald test: all coeff. = 0 125.7
***

 127.1
***

  359.4
***

 288.1
***

 

Pseudo R
2
 n.a. n.a.  10.8% 9.7% 

No. of observations 3,880 3,874  767 684 

No. of VC firms 302 301    

No. of funds raised 771 770    

Model estimated  Hazard Hazard  Tobit Tobit 

            

 

  



Table 5. Alternative Explanation for Persistence: Fundraising in Good and Bad Times. 
This table tests an informal alternative explanation for performance persistence: GPs give incumbent LPs a share of the 

rents to ensure stable relationships over time, so that fundraising is easier in bad times. Under this explanation, 

performance persistence should disappear if one focuses on VC firms that have raised funds in both “bad” and “good” 

fundraising years. Unlike in Table 3, the sample is therefore restricted to VC firms that have raised funds in both “bad” 

and “good” years over the sample period. Column 1 defines “bad” years as those in which total fundraising in the U.S. 

VC industry declined by at least 10% in dollar terms compared to the year before (i.e., 1985, 1987, 1990, 1991, 1996, 

2001, and 2002). Column 2 defines “bad” years as those in which fundraising in the VC industry declined by at least 

20% compared to the year before (i.e., 1990, 1991, 2001, and 2002). Column 3 defines “bad” years as those in which 

fewer first-time funds were raised than in the year before (i.e., 1983, 1985, 1988, 1990, 1991, 1994, 1996, 1998, 2001, 

and 2002). Column 4 defines “bad” years as those in which fewer follow-on funds were raised than in the year before 

(i.e., 1985, 1986, 1988, 1990, 1991, 1996, 2001, and 2002). “Good” years are those not classified as “bad”. We regress 

fund N’s ex post IRR, net of carry and fees, measured at the end of the fund’s ten-year life, on the performance of the 

fund manager’s previous fund (N-1) and controls for fund size and risk. The performance of a fund manager’s previous 

fund is measured either ex post (i.e., after ten years) or using the “interim” IRR that the previous fund reported in the 

year before fund N was raised. All models are estimated using OLS with vintage-year fixed effects. Heteroskedasticity-

consistent standard errors, clustered on VC firm, are shown in italics. We use 
***

, 
**

, and 
*
 to denote significance at the 

1%, 5%, and 10% level (two-sided), respectively. 

 

 Ex post IRR of fund N 

  (1) (2) (3) (4) 

     

Previous fund’s performance     

ex post IRR of fund N-1  0.311
***

 0.381
***

 0.293
***

 0.323
***

 

 0.074 0.087 0.066 0.072 

interim IRR of fund N-1 as of previous year 0.054
**

 0.074
**

 0.073
***

 0.056
**

 

 0.027 0.030 0.028 0.028 

Controls     

log size of fund N-1 0.055
**

 0.003 0.051
**

 0.056
***

 

 0.024 0.023 0.023 0.023 

dummy = 1 if fund N has early-stage focus 0.096
**

 0.071 0.071 0.091
*
 

 0.048 0.065 0.045 0.048 

Diagnostics     

Vintage year FE yes yes yes yes 

Wald test: all coeff. = 0 11.3
***

 16.1
***

 8.1
***

 9.3
***

 

Adjusted R
2
 22.7% 23.8% 23.9% 23.6% 

No. of observations 302 201 344 308 

     

 



Internet Appendix. A Simplified Model with up to Three Funds

Raised by Each GP

Hochberg, Ljungqvist, and Vissing-Jorgensen’s (2012) informational hold-up model assumes that each

GP raises at most two funds. In practice, GPs often raise more than two funds over time. Would

informational hold-up imply that persistence remains even when comparing returns on, say, funds 2

and 3?

To examine this, we construct a simplified version of the model (with risk-neutral agents and

non-overlapping funds) in which we allow each GP to raise up to three funds. This simplified version

demonstrates that performance persistence is present both from fund 1 to 2 and from fund 2 to 3.

Intuitively, performance persistence extends to later funds because only a small amount of information

asymmetry is required to induce outside investors to withdraw from the market. It does not matter

whether the information asymmetry is reduced over time as the performance of later funds is observed.

What matters is simply that the information asymmetry remains positive.

1 Setup

Fund structure and general partner skill: A given fund is raised and managed by a single GP.

GPs differ in skill.

At t = 0, each GP raises a fund of size I0, which we refer to as a first-time fund. Depending on

the information learned between t = 0 and t = 1, the GP may raise a follow-on fund of size I1 at t = 1

and another one of size I2 at t = 2. Each fund lasts one period. We assume that third funds can be

raised only if second funds are raised.1

A GP’s skill determines the properties of the cash flows returned by his funds and is captured by

the variable µi. For a given GP i, the cash flows are

Ci
1 = Ai

1 ln
(

1 + I i0
)

for the first fund (1)

Ci
2 = Ai

2 ln
(

1 + I i1
)

for the second fund, if raised (2)

Ci
3 = Ai

3 ln
(

1 + I i2
)

for the third fund, if raised (3)

1This could be motivated, for example, by GP skill depreciating to zero if he is out of the VC market for a period.
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with subscripts referring to when the cash flow is received and where

Ai
1 = a+ µi + εi1, εi1|µ

i ∼ N

(

0,
σ2
(

Ii0
)2

[

ln
(

1 + Ii0
)]2

)

(4)

Ai
2 = a+ µi + εi2, εi2|µ

i ∼ N

(

0,
σ2
(

Ii1
)2

[

ln
(

1 + Ii1
)]2

)

(5)

Ai
3 = a+ µi + εi3, εi3|µ

i ∼ N

(

0,
σ2
(

Ii2
)2

[

ln
(

1 + Ii2
)]2

)

(6)

εi1, εi2, εi3 are independent, given µi. (7)

All shocks are drawn independently across GPs and are independent of the GP’s skill µi. All risk is

idiosyncratic.

There is a continuum of GP types of mass one. We assume that µi is distributed uniformly over

the interval [−µ, µ] such that µi = 0 corresponds to average skill. We abstract from agency problems

by assuming that GPs manage their funds in their LPs’ best interest.

Limited partners: There is a large set of ex ante identical investors, such that the LP market is

perfectly competitive at t = 0. Each fund has one LP.

Preferences and wealth: Both GPs and LPs are risk-neutral and consume at time t = 3. Each

GP has initial wealth of WGP
0 and each LP has initial wealth of WLP

0 . In addition to investing in the

VC industry, LPs can invest at a riskfree rate of rf , set equal to zero without loss of generality. We

assume that each LP can invest in one first-time fund and, if desired, in any follow-on fund raised by

the same GP. Cash flows received at t = 1 and t = 2 are invested at the riskfree rate until t = 3.

Learning about GP skill: At time t = 0, no-one knows the GP’s skill, µi. At t = 1, the GP and

the LP who invested in the GP’s first fund learn the GP’s skill µi . LPs who have not invested in the

GP’s first fund only observe its cash flow (and fund size, I0). We refer to this setup as asymmetric

learning, in the sense that the incumbent LP learns the GP’s type faster than do outside investors.

Payoff functions: We assume that the cash flow from a given fund is divided between the GP and

the LP according to the following contract agreed at the start of the fund. For first-time funds, GP i

receives (at the end of the fund, at t = 1) a dollar amount of

XGP
1 = M1. (8)

The LP investing with this GP receives, at t = 1,

XLP
1 = Ci

1 −M1. (9)
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Similar, for second or third funds, payoffs are:

XGP
2 = M2, XLP

2 = Ci
2 −M2 at t = 2 (10)

XGP
3 = M3, XLP

3 = Ci
3 −M3 at t = 3. (11)

While the fees in the model are expressed as dollar amounts, once the optimal fund size has been

derived, one can calculate the implied percentage fee for a given fund, which then corresponds to the

management fee used in actual VC contracts.

The values of the fees, the fund sizes, and which LPs invest in follow-on funds will be the focus of

the solution of the model.

2 Fund Size and Fee in Follow-On Funds (Second or Third Funds)

Under asymmetric learning, the LP market is perfectly competitive at t = 0 but not at t = 1. Because

outside investors do not learn the GP’s type, the incumbent LP has an informational advantage over

outside investors when the GP attempts to raise a follow-on fund. This allows the incumbent LP to

extract part of the follow-on fund’s value. While it is intuitive that the incumbent LP’s informational

advantage should improve the terms he obtains, it is useful to model the bargaining game explicitly

since it allows us to be clear about the role played by outside investors.

Bargaining: We use a bargaining setup based on Rubinstein (1982) bargaining, adapted to the VC

setting. For a particular GP i and his incumbent LP, we assume the following sequential bargaining

game starting at t = 1 for second funds. The same game is then repeated at t = 2 for third funds

(replace subscript 1 by 2 and subscript 2 by 3 for third funds).

(1) The GP makes an offer to the incumbent LP to invest IGP
1 and pay a fee of MGP

2 .

(2) If the GP’s offer is rejected, the incumbent LP offers to provide funds ILP1 and pay a fee of

MLP
2 .

(3) If the LP’s offer is rejected, the GP makes another offer; and so on.

We assume that delay in reaching an agreement is costly and, as is standard in Rubinstein bar-

gaining (e.g., Binmore, Rubinstein, and Wolinsky (1986)), model this by assuming that between each

round of offers there is an exogenous probability p that the bargaining process will terminate without

an agreement.

If no agreement is reached, each party receives its outside option. For the incumbent LP, this

equals a riskfree return of rf . The GP’s outside option depends on what outside investors are willing

3



to offer if no agreement is reached with the incumbent LP. We assume that outside investors cannot see

(or cannot verify) the bids made prior to breakdown of bargaining with the incumbent LP. Therefore,

they do not know whether bargaining has broken down for exogenous reasons, or whether it has broken

down because one of the parties has simply refused to bargain any further.

We furthermore assume that an incumbent LP can always counter any offer an outside investor

makes. The GP’s outside option is then zero, because outside investors face a winner’s curse. Say

an outside investor observes a first-time fund cash flow of Ci
1. Denote by µ∗ the value of µ such that

the NPV of the GP’s fund is zero. The outside investor knows that if he offers an investment and

fee that gives the LP an expected payoff above his outside option when the GP’s type µi exceeds µ∗,

the incumbent LP will counter with an offer that is more attractive to the GP only when µi in fact

exceeds µ∗. When the GP’s type µi is below µ∗, no LP offer can be made that yields a payoff to

the incumbent LP above his outside option and that the GP will accept, because the fund NPV is

negative (implying that the total surplus to be shared between the GP and LP is negative). Therefore,

for µi < µ∗, the incumbent LP does not counter any outside LP offer, leaving the outside investor

with a loss. Understanding this, the outside investor can never make an expected-utility-increasing

investment and rationally withdraws from the market.

The fund sizes that maximizes joint surplus: To solve for the Nash equilibrium strategies, it is

helpful to start by deriving the fund sizes for second and third funds that maximize the joint surplus of

the GP and LP. With risk-neutral agents, this will simply be the fund size that maximizes the fund’s

NPV. The fund sizes solve

max
I1,I2

E
(

UGP |µi
)

+ E
(

ULP |µi
)

(12)

where

E
(

UGP |µi
)

= WGP
3 = WGP

0 +M1 +M2 +M3 (13)

E
(

ULP |µi
)

= E
(

WLP
3 |µi

)

= WLP
0 +

(

E
(

Ai
1|µ

i
)

ln (1 + I0)−M1 − I0
)

+
(

E
(

Ai
2|µ

i
)

ln (1 + I1)−M2 − I1
)

+
(

E
(

Ai
3|µ

i
)

ln (1 + I2)−M3 − I2
)

(14)

Note that the fund sizes that maximize the joint surplus do not depend on the fees, M2 and M3.

Instead, these fees simply determine how the surplus is shared. Maximizing the joint surplus thus

implies solving:

max
I1

(

E
(

A2|µ
i
)

ln (1 + I1)− I1
)

and max
I2

(

E
(

A3|µ
i
)

ln (1 + I2)− I2
)

. (15)
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Since E
(

A2|µ
i
)

= E
(

A3|µ
i
)

= a+ µi, the solution is

I1
(

µi
)

= I2
(

µi
)

= a+ µi − 1 . (16)

Denote this common fund size by I
(

µi
)

. As would be expected, the fund size that maximizes the joint

surplus increases in GP skill. It equals zero for µi = 1− a. Therefore µ∗, the value for which the NPV

of the fund is zero, is 1− a.

The LP’s expected cash flow before fees in a second fund is

[

E
(

A2|µ
i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)]

(17)

which is zero for E
(

A2|µ
i
)

= 1 (i.e., for µi = µ∗) and positive for E
(

A2|µ
i
)

> 1 (µi > µ∗). The

solution for third funds is similar.

Nash equilibrium strategies, fund size, and fee: The following proposition states the equilibrium

outcome.

Proposition 1: As p −→ 0, the following is a subgame perfect equilibrium in the bargaining game

for second funds and in the bargaining game for third funds, with j = 2 for second funds and j = 3

for third funds:

(a) All offers involve fund sizes that maximize the joint surplus, I
(

µi
)

(which is zero for µi < µ∗).

(b) Denote by MLP,∗
j and MGP,∗

j the fees such that (i) the LP is indifferent between accepting

the GP’s offer and having his own offer accepted in the next round, and (ii) the GP is indiffer-

ent between accepting the LP’s offer and having his own offer accepted in the next round. As

p −→ 0, MLP,∗
j and MGP,∗

j both converge to M
(

µi
)

= 1
2

[

E
(

Aj |µ
i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)]

=

1
2

[(

a+ µi
)

ln
(

1 + I
(

µi
))

− I
(

µi
)]

.

(c) The GP’s strategy is to always offer (I
(

µi
)

,MGP,∗
j ) and always reject offers with a fee below

MLP,∗
j . The LP’s strategy is to always offer (I

(

µi
)

,MLP,∗
j ) whenever it is his turn to make an offer

and always reject offers with a fee above MGP,∗
j .

Given (c), the equilibrium outcome of the sequential bargaining game is immediate agreement with

the LP accepting the GP’s first offer. The fund fee for p −→ 0 is thus M
(

µi
)

and the fund size is

I
(

µi
)

.

Proof of Proposition 1: See Proof section below. We focus on the case where p −→ 0 from here

on.
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The implication of Proposition 1 is that the LP earns rents in the form of an expected return in ex-

cess of the riskfree rate (set to zero for simplicity). In dollar terms, this rent is the same for second and

third funds and is given by 1
2

[(

a+ µi
)

ln
(

1 + I
(

µi
))

− I
(

µi
)]

= 1
2

[(

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

,

which is simply half of the NPV of running the fund. Thus, the GP and LP share the value of running

the second and third fund equally.

These rents increase in the GP’s skill µi since

d

dµi

{

1

2

[(

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

}

(18)

=
1

2

(

ln
(

a+ µi
))

> 0 for a+ µi > 1 which is true for µi > µ∗.

Similarly, the expected return to the LP, after fees, in both second and third funds, is:

E
(

ri2|µ
i, µ > µi > µ∗) = E

(

ri3|µ
i, µ > µi > µ∗) =

1
2

[(

a+ µi
)

ln
(

1 + I
(

µi
))

− I
(

µi
)]

I (µi)
(19)

=
1
2

[(

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

(a+ µi − 1)
. (20)

This also increases in µi since

d

dµi

{

1
2

[(

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

(a+ µi − 1)

}

(21)

=
1
2 ln

(

a+ µi
) (

a+ µi − 1
)

−
[

1
2

[(

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]]

(a+ µi − 1)2

which is positive when ln
(

a+ µi
) (

a+ µi − 1
)

−
[(

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

=
(

a+ µi − 1
)

−

ln
(

a+ µi
)

> 0 which is true since x− 1 > ln(x) for any x > 1.

We show below that this is what generates performance persistence.

3 Fund Size and Fee in First-Time Funds

As no learning has taken place yet, the LP market is perfectly competitive at time t = 0. Accordingly,

LPs have no bargaining power and all GPs offer LPs a contract that ensures the highest possible

expected utility for the GP, subject to each LP achieving an expected utility across investing in both

the GP’s first and follow-on funds equal to what the LP could obtain by not investing in venture

capital. We refer to this as the LP’s participation constraint. This constraint will depend on the

outcome for follow-on funds stated in Proposition 1.

We first determine the LP’s participation constraint and then solve for the fund size that maximizes

the GP’s expected utility subject to this constraint. Not surprisingly, the fund size that results will
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be the one that maximizes joint GP and LP surplus, and this will be the fund size that maximizes the

fund’s NPV (as was the case for follow-on funds).

LP’s participation constraint: The LP’s expected utility is EULP = E
(

WLP
3

)

= Eµi

(

E
(

WLP
3 |µi

))

and the LP’s participation constraint is that EULP = WLP
0 . As of t = 0, GP type is unknown

and so I0 will not depend on µi. However, when calculating the LP’s expected utility, expectations

must be taken both with respect to µi and with respect to the shocks A1, A2, and A3 conditional

on µi. Furthermore, for follow-on funds, only funds with GP skill µi ≥ µ∗ are raised, and thus
(

E
(

Ai
2|µ

i
)

ln
(

1 + I1
(

µi
))

−M2

(

µi
)

− I1
(

µi
))

and
(

E
(

Ai
3|µ

i
)

ln
(

1 + I2
(

µi
))

−M3

(

µi
)

− I2
(

µi
))

are

zero for µi < µ∗. Therefore, the constraint is:

Eµi











WLP
0 +

(

E
(

Ai
1|µ

i
)

ln (1 + I0)−M1 − I0
)

+
(

E
(

Ai
2|µ

i
)

ln
(

1 + I1
(

µi
))

−M2

(

µi
)

− I1
(

µi
))

+
(

E
(

Ai
3|µ

i
)

ln
(

1 + I2
(

µi
))

−M3

(

µi
)

− I2
(

µi
))











= WLP
0 (22)

⇐⇒

a ln (1 + I0)−M1 − I0 + 2

∫ µ

µ∗

((

a+ µi
)

ln
(

1 + I
(

µi
))

−M
(

µi
)

− I
(

µi
)) 1

2µ
dµi = 0 (23)

⇐⇒

M1 (I0) = a ln (1 + I0)− I0 + 2

∫ µ

µ∗

((

a+ µi
)

ln
(

1 + I
(

µi
))

−M
(

µi
)

− I
(

µi
)) 1

2µ
dµi (24)

= a ln (1 + I0)− I0 +

∫ µ

µ∗

((

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)) 1

2µ
dµi (25)

The LP’s participation constraint simply says that, to the extent that the LP earns an expected cash

flow after fees in follow-on funds that exceeds his investment (due to his informational hold-up power),

he will earn an expected cash flow after fees in first funds that is below his investment in these funds.

Fund size and fee in first-time funds: The GP picks I0 to maximize his expected utility subject

to the LP’s participation constraint:

max
I0

WGP
0 +M1 + Eµi

(

M2

(

µi
)

+M3

(

µi
))

s.t. M1 = M1 (I0) . (26)

Since WGP
0 + Eµi

(

M2

(

µi
)

+M3

(

µi
))

does not depend on what happens in the first-time fund, this

implies simply choosing the value of I0 that maximizes M1 (I0). This will be the value of I0 that

maximizes the NPV of the fund:

max
I0

a ln (1 + I0)− I0 + 2

∫ µ

µ∗

((

a+ µi
)

ln
(

1 + I
(

µi
))

−M
(

µi
)

− I
(

µi
)) 1

2µ
dµi (27)

⇐⇒ max
I0

a ln (1 + I0)− I0 (28)

⇐⇒ I0 = a− 1. (29)
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The first-time fund fee is then given by M1 (I0) for this value of I0 :

M1 (I0) = a ln (a)− (a− 1) +

∫ µ

µ∗

((

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)) 1

2µ
dµi. (30)

4 Empirical Implications

The realized returns to LPs after fees are given by:

ri1 =
Ai

1 ln (1 + I0)−M1 (I0)− I0
I0

=

(

µi + εi1
)

ln (a)− 1
2µ

∫ µ
µ∗

((

a+ µi
) (

ln
(

a+ µi
)

− 1
)

+ 1
)

dµi

a− 1

ri2 =
Ai

2 ln
(

1 + I
(

µi
))

−M
(

µi
)

− I
(

µi
)

I (µi)
=

1
2

[(

a+ µi + εi2
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

a+ µi − 1

ri3 =
Ai

3 ln
(

1 + I
(

µi
))

−M
(

µi
)

− I
(

µi
)

I (µi)
=

1
2

[(

a+ µi + εi3
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

a+ µi − 1

We next show that this model implies the persistence in LP returns after fees that has been documented

in the literature.

Implication 1: Persistence in LP after-fee returns

(a) In the cross-section of GPs with follow-on funds, a high return to the LP (after fees) in a GP’s

first fund predicts a high return to the LP (after fees) in the GP’s second fund: E
(

ri2|r
i
1, µ > µi > µ∗)

is increasing in ri1.

(b) In the cross-section of GPs with follow-on funds, a high return to the LP (after fees) in a GP’s

second fund predicts a high return to the LP (after fees) in the GP’s third fund: E
(

ri3|r
i
2, µ > µi > µ∗)

is increasing in ri2.

(c) Persistence is stronger from second to third funds than from first to second funds: The regression

coefficient on r2 in a linear regression of values of r3 on values of r2 (and a constant term) is larger

than the regression coefficient on r1 in a linear regression of values of r2 on values of r1 (and a constant

term). This is the case for all parameter values σ2, µ, and a (with a > 1).

Proof: See Proof section below.

One might think that outside investors could simply invest in all second or third funds raised by

GPs with high returns on their prior funds, thus expecting to earn high expected returns. Our model,

however, makes it clear why this is not possible. The winner’s curse problem described earlier implies

that outside investors would only be able to invest with those GPs for whom their offers implied

negative NPV to investors. This implies that the ‘return-chasing’ behavior emphasized by Berk and

Green (2004) as the mechanism eliminating performance persistence in mutual funds breaks down in

the VC setting when there is asymmetric learning.
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Proofs for the Simplified Model with up to Three Funds Raised by Each GP

Proof of Proposition 1

For third funds:

(a): This part of the proposition is true for any value of p. Consider an offer (IGP
2 ,MGP

3 ) with fund

size IGP
2 different from I

(

µi
)

. By definition of I
(

µi
)

as the fund size that maximizes the joint surplus,

the GP can always make himself better off by changing the proposed fund size to I
(

µi
)

and adjusting

the proposed fee to keep the LP happy. A similar argument applies to offers made by the LP.

(b): The fees MLP,∗
3 and MGP,∗

3 that make the GP and the LP indifferent between accepting the other

party’s offer now and having their own offer accepted in the next offer round solve the following two

equations. For any p, the GP’s indifference condition is

MLP,∗
3 = (1− p)MGP,∗

3 .

The LP’s indifference condition is

E
(

Ai
3|µ

i
)

ln
(

1 + I
(

µi
))

−MGP,∗
3 − I

(

µi
)

= (1− p)
[

E
(

Ai
3|µ

i
)

ln
(

1 + I
(

µi
))

−MLP,∗
3 − I

(

µi
)

]

.

Combining the two equations implies:

MGP,∗
3 =

E
(

Ai
3|µ

i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)

2− p

MLP∗
3 = (1− p)MGP,∗

3 = (1− p)
E
(

Ai
3|µ

i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)

2− p

Thus, as p goes to zero:

MGP,∗
3 →

E
(

Ai
3|µ

i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)

2

MLP,∗
3 →

E
(

Ai
3|µ

i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)

2
.

We denote this common value by M3

(

µi
)

.

(c) We need to show that each party’s strategy is an optimal response to the other party’s strategy.

By construction of MGP,∗
3 and MLP,∗

3 (as stated above), neither the GP nor the LP can hope to do

better by rejecting the other party’s offer. Furthermore, the GP cannot do better by increasing his

proposed fee above MGP,∗
3 , as the LP’s strategy rejects all such offers. Additionally, the LP cannot do

better by decreasing his proposed fee below MLP,∗
3 as the GP’s strategy rejects all such offers.

9



For second funds:

(a): Same argument as for third funds.

(b): At the time the second fund is raised, both the GP and LP know what the bargaining outcome

will be for the third fund, as derived above: Immediate acceptance by the LP of the GP’s first offer

with fee MGP,∗
3 . Furthermore, given our assumption that third funds can be raised only if second

funds are raised, a breakdown in negotiations for a second fund implies a loss of any payoff from third

funds.

Thus, the fees MLP,∗
2 and MGP,∗

2 that make the GP and the LP indifferent between accepting the

other party’s offer now or having their own offer accepted in the next offer round solve the following

two equations. For any p, the GP’s indifference condition is

MLP,∗
2 +MGP,∗

3 = (1− p)
(

MGP,∗
2 +MGP,∗

3

)

⇐⇒

MLP,∗
2 = (1− p)MGP,∗

2 − pMGP,∗
3 .

The LP’s indifference condition is

[

E
(

Ai
2|µ

i
)

ln
(

1 + I
(

µi
))

−MGP,∗
2 − I

(

µi
)

]

+
[

E
(

Ai
3|µ

i
)

ln
(

1 + I
(

µi
))

−MGP,∗
3 − I

(

µi
)

]

= (1− p)
([

E
(

Ai
2|µ

i
)

ln
(

1 + I
(

µi
))

−MLP,∗
2 − I

(

µi
)

]

+
[

E
(

Ai
3|µ

i
)

ln
(

1 + I
(

µi
))

−MGP,∗
3 − I

(

µi
)

])

.

Combining the two equations implies:

[

E
(

Ai
2|µ

i
)

ln
(

1 + I
(

µi
))

−MGP,∗
2 − I

(

µi
)

]

+
[

E
(

Ai
3|µ

i
)

ln
(

1 + I
(

µi
))

−MGP,∗
3 − I

(

µi
)

]

= (1− p)





[

E
(

Ai
2|µ

i
)

ln
(

1 + I
(

µi
))

−
[

(1− p)MGP,∗
2 − pMGP,∗

3

]

− I
(

µi
)

]

+
[

E
(

Ai
3|µ

i
)

ln
(

1 + I
(

µi
))

−MGP,∗
3 − I

(

µi
)

]





⇐⇒

2
[

E
(

Ai
2|µ

i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)]

−MGP,∗
2 −MGP,∗

3

= (1− p)
(

2
[

E
(

Ai
2|µ

i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)]

− (1− p)
[

MGP,∗
2 +MGP,∗

3

])

⇐⇒

(2− p)
[

MGP,∗
2 +MGP,∗

3

]

= 2
[

E
(

Ai
2|µ

i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)]

⇐⇒

MGP,∗
2 =

E
(

Ai
2|µ

i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)

2− p
, which equals MGP,∗

3

MLP∗
2 = (1− 2p)

E
(

Ai
2|µ

i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)

2− p
.
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Thus, as p goes to zero:

MGP,∗
2 →

E
(

Ai
2|µ

i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)

2

MLP,∗
2 →

E
(

Ai
2|µ

i
)

ln
(

1 + I
(

µi
))

− I
(

µi
)

2
.

We denote this common value by M2

(

µi
)

(which equals M3

(

µi
)

).

(c) Same argument as for third funds.

Proof of Implication 1a

ri1 =
Ai

1 ln (1 + I0)−M1 (I0)− I0
I0

=

(

µi + εi1
)

ln (a)− 1
2µ

∫ µ
µ∗

((

a+ µi
) (

ln
(

a+ µi
)

− 1
)

+ 1
)

dµi

a− 1

ri2 =
Ai

2 ln
(

1 + I
(

µi
))

−M
(

µi
)

− I
(

µi
)

I (µi)
=

1
2

[(

a+ µi + εi2
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

a+ µi − 1

We have already shown in the main text that E
(

ri2|µ
i
)

is positive and increasing in µi for µi > µ∗,

and zero otherwise. To show that E
(

ri2|r
i
1, µ > µi > µ∗) is increasing in ri1, rewrite it as follows:

E
(

ri2|r
i
1, µ > µi > µ∗) = Eµi

(

E
(

ri2|r
i
1, µ

i, µ > µi > µ∗)) =
∫ µ

µ∗

E
(

ri2|µ
i
)

f
(

µi|ri1, µ > µi > µ∗) dµi

=

∫ µ

µ∗

1
2

[(

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

(a+ µi − 1)
f
(

µi|ri1, µ > µi > µ∗) dµi

which implies

d

dri1
E
(

ri2|r
i
1, µ > µi > µ∗) =

∫ µ

µ∗

1
2

[(

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

(a+ µi − 1)

d

dri1
f
(

µi|ri1, µ > µi > µ∗) dµi.

Since εi1|µ
i ∼ N

(

0, σ2
ε1

)

with σ2
ε1 =

σ2(Ii0)
2

[ln(1+Ii
0)]

2 = σ2(a−1)2

[ln(a)]2
, we have ri1|µ

i, µ > µi > µ∗ ∼ N
(

g
(

µi
)

, σ2
)

with g
(

µi
)

=
µi ln(a)− 1

2µ

∫ µ

µ∗((a+µi)(ln(a+µi)−1)+1)dµi

a−1 = µi ln(a)−x
a−1 , where

x = 1
2µ

∫ µ
µ∗

((

a+ µi
) (

ln
(

a+ µi
)

− 1
)

+ 1
)

dµi does not depend on µi. Therefore,

f
(

ri1|µ > µi > µ∗) =

∫ µ

µ∗

f
(

ri1|µ
i, µ > µi > µ∗) f

(

µi|µ > µi > µ∗) dµi

=

∫ µ

µ∗

1
√
2πσ2

e
− 1

2

(

z
µi

)

2

dµi 1

µ− µ∗ =
1

µ− µ∗ [Φ (zµ)− Φ (zµ∗)]

and

f
(

µi|ri1, µ > µi > µ∗) = f
(

ri1|µ
i, µ > µi > µ∗) f

(

µi|µ > µi > µ∗)

f
(

ri1|µ > µi > µ∗)

=
1

√
2πσ2

e
− 1

2

(

z
µi

)

2 1
µ−µ∗

1
µ−µ∗ [Φ (zµ)− Φ (zµ∗)]

=
1
σφ
(

zµi

)

[Φ (zµ)− Φ (zµ∗)]

11



for µ > µi > µ∗, 0 otherwise, where φ and Φ are the pdf and cdf of the standard normal distribution,

zµi =
ri
1
−g(µi)
σ , zµ =

ri
1
−g(µ)
σ , and zµ∗ =

ri
1
−g(µ∗)
σ . Note that this simply says that µi|ri1, µ > µi >

µ∗ is truncated normal, with truncation at −µ and µ∗. Since φ
(

zµi

)

= 1√
2π
e
− 1

2

(

z
µi

)

2

,
dφ

(

z
µi

)

dri
1

=

− 1√
2π
e
− 1

2

(

z
µi

)

2

z
µi

σ = −φ
(

zµi

) z
µi

σ and

df
(

µi|ri1, µ > µi > µ∗)

dri1
=

− 1
σφ
(

zµi

) z
µi

σ

Φ (zµ)− Φ (zµ∗)
−

1
σφ
(

zµi

)

[Φ (zµ)− Φ (zµ∗)]
2

[

φ (zµ)

(

1

σ

)

− φ (zµ∗)

(

1

σ

)]

=
1
σφ
(

zµi

)

1
σ

Φ (zµ)− Φ (zµ∗)

{

−zµi −
φ (zµ)− φ (zµ∗)

Φ (zµ)− Φ (zµ∗)

}

= f
(

µi|ri1, µ > µi > µ∗) 1
σ

{

−zµi −
φ (zµ)− φ (zµ∗)

Φ (zµ)− Φ (zµ∗)

}

.

The expression f
(

µi|ri1, µ > µi > µ∗) 1
σ is positive for all values of µi.

{

−zµi −
φ(zµ)−φ(zµ∗)
Φ(zµ)−Φ(zµ∗)

}

is in-

creasing in µi (since
φ(zµ)−φ(zµ∗)
Φ(zµ)−Φ(zµ∗)

does not depend on i). Thus, there exists a value of µi, call it µx, which

will depend on ri1 and for which
df(µi|ri

1
,µ>µi>µ∗)
dri

1

= 0 for µi = µx,
df(µi|ri

1
,µ>µi>µ∗)
dri

1

< 0 for µi < µx, and

df(µi|ri
1
,µ>µi>µ∗)
dri

1

> 0 for µi > µx. Thus, d
dri

1

E
(

ri2|r
i
1, µ > µi > µ∗) =

∫ µ
µ∗ E

(

ri2|µ
i
) df(µi|ri

1
,µ>µi>µ∗)
dri

1

dµi

is positive (for all values of ri1) since
∫ µ
µ∗

df(µi|ri
1
,µ>µi>µ∗)
dri

1

dµi = 0 and E
(

ri2|µ
i
)

is positive and in-

creasing, implying that the positive values of
df(µi|ri

1
,µ>µi>µ∗)
dri

1

in
∫ µ
µ∗ E

(

ri2|µ
i
) df(µi|ri

1
,µ>µi>µ∗)
dri

1

dµi are

multiplied by a larger positive number than are the negative values of
df(µi|ri

1
,µ>µi>µ∗)
dri

1

.

Proof of Implication 1b

ri2 =
Ai

2 ln
(

1 + I
(

µi
))

−M
(

µi
)

− I
(

µi
)

I (µi)
=

1
2

[(

a+ µi + εi2
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

a+ µi − 1

ri3 =
Ai

3 ln
(

1 + I
(

µi
))

−M
(

µi
)

− I
(

µi
)

I (µi)
=

1
2

[(

a+ µi + εi3
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

a+ µi − 1

We have already shown in the main text that E
(

ri3|µ
i
)

is positive and increasing in µi for µi > µ∗,

and zero otherwise. To show that E
(

ri3|r
i
2, µ > µi > µ∗) is increasing in ri2, rewrite it as follows:

E
(

ri3|r
i
2, µ > µi > µ∗) = Eµi

(

E
(

ri3|r
i
2, µ

i, µ > µi > µ∗)) =
∫ µ

µ∗

E
(

ri3|µ
i
)

f
(

µi|ri2, µ > µi > µ∗) dµi

=

∫ µ

µ∗

1
2

[(

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

(a+ µi − 1)
f
(

µi|ri2, µ > µi > µ∗) dµi

which implies

d

dri2
E
(

ri3|r
i
2, µ > µi > µ∗) =

∫ µ

µ∗

1
2

[(

a+ µi
)

ln
(

a+ µi
)

−
(

a+ µi − 1
)]

(a+ µi − 1)

d

dri2
f
(

µi|ri2, µ > µi > µ∗) dµi.
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Since εi2|µ
i ∼ N

(

0, σ2
ε2

)

with σ2
ε2 =

σ2(Ii1)
2

[ln(1+Ii
1)]

2 =
σ2(a+µI−1)

2

[ln(a+µi)]2
, we have ri2|µ

i, µ > µi > µ∗ ∼

N
(

h
(

µi
)

, σ2
)

with h
(

µi
)

=
1

2
[(a+µi) ln(a+µi)−(a+µi−1)]

a+µi−1
. We show in the main text that h

(

µi
)

is

increasing in µi for µi > µ∗ = 1− a.

Therefore,

f
(

ri2|µ > µi > µ∗) =

∫ µ

µ∗

f
(

ri2|µ
i, µ > µi > µ∗) f

(

µi|µ > µi > µ∗) dµi

=

∫ µ

µ∗

1
√
2πσ2

e
− 1

2

(

z
µi

)

2

dµi 1

µ− µ∗ =
1

µ− µ∗ [Φ (zµ)− Φ (zµ∗)]

and

f
(

µi|ri2, µ > µi > µ∗) = f
(

ri2|µ
i, µ > µi > µ∗) f

(

µi|µ > µi > µ∗)

f
(

ri2|µ > µi > µ∗)

=
1

√
2πσ2

e
− 1

2

(

z
µi

)

2 1
µ−µ∗

1
µ−µ∗ [Φ (zµ)− Φ (zµ∗)]

=
1
σφ
(

zµi

)

[Φ (zµ)− Φ (zµ∗)]

for µ > µi > µ∗, 0 otherwise, where φ and Φ are the pdf and cdf of the standard normal distribution,

zµi =
ri
2
−h(µi)
σ , zµ =

ri
2
−h(µ)
σ , and zµ∗ =

ri
2
−h(µ∗)
σ . Note that this just says that µi|ri2, µ > µi >

µ∗ is truncated normal, with truncation at −µ and µ∗. Since φ
(

zµi

)

= 1√
2π
e
− 1

2

(

z
µi

)

2

,
dφ

(

z
µi

)

dri
2

=

− 1√
2π
e
− 1

2

(

z
µi

)

2

z
µi

σ = −φ
(

zµi

) z
µi

σ and

df
(

µi|ri2, µ > µi > µ∗)

dri2
=

− 1
σφ
(

zµi

) z
µi

σ

Φ (zµ)− Φ (zµ∗)
−

1
σφ
(

zµi

)

[Φ (zµ)− Φ (zµ∗)]
2

[

φ (zµ)

(

1

σ

)

− φ (zµ∗)

(

1

σ

)]

=
1
σφ
(

zµi

)

1
σ

Φ (zµ)− Φ (zµ∗)

{

−zµi −
φ (zµ)− φ (zµ∗)

Φ (zµ)− Φ (zµ∗)

}

= f
(

µi|ri2, µ > µi > µ∗) 1
σ

{

−zµi −
φ (zµ)− φ (zµ∗)

Φ (zµ)− Φ (zµ∗)

}

.

The expression f
(

µi|ri2, µ > µi > µ∗) 1
σ is positive for all values of µi.

{

−zµi −
φ(zµ)−φ(zµ∗)
Φ(zµ)−Φ(zµ∗)

}

is in-

creasing in µi (since
φ(zµ)−φ(zµ∗)
Φ(zµ)−Φ(zµ∗)

does not depend on i). Thus, there exists a value of µi, call it

µxx (which will depend on ri2) for which
df(µi|ri

2
,µ>µi>µ∗)
dri

2

= 0 for µi = µxx,
df(µi|ri

2
,µ>µi>µ∗)
dri

1

<

0 for µi < µxx, and
df(µi|ri

2
,µ>µi>µ∗)
dri

2

> 0 for µi > µxx. Therefore, d
dri

2

E
(

ri3|r
i
2, µ > µi > µ∗) =

∫ µ
µ∗ E

(

ri3|µ
i
) df(µi|ri

2
,µ>µi>µ∗)
dri

2

dµi is positive (for all values of ri2) since
∫ µ
µ∗

df(µi|ri
2
,µ>µi>µ∗)
dri

2

dµi = 0

and E
(

ri3|µ
i
)

is positive and increasing, implying that in
∫ µ
µ∗ E

(

ri3|µ
i
) df(µi|ri

2
,µ>µi>µ∗)
dri

2

dµi the positive

values of
df(µi|ri

2
,µ>µi>µ∗)
dri

2

are multiplied by a larger positive number than are the negative values of

df(µi|ri
2
,µ>µi>µ∗)
dri

2

.
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Proof of Implication 1c

We have verified numerically that persistence is higher from second to third funds than from first

to second funds, for all values of σ2, µ and a (with a > 1). We do this by constructing a data set

consistent with the model as follows: We define a vector of equally spaced values of µi between µ∗ and

µ. For each value of µi we draw values for εi1, ε
i
2 and εi3 and define ri1, r

i
2, and ri3. We then regress r2 on

r1 (and a constant) and regressed r3 on r2 (and a constant) and compare the regression coefficients.

We do this for for a wide range of parameter values σ2, µ and a > 1.
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